单边周期环形谐振径向声子晶体结构

吕锐翔,李丽霞,杨继博

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 68-72.

PDF(1436 KB)
PDF(1436 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 68-72.
论文

单边周期环形谐振径向声子晶体结构

  • 吕锐翔,李丽霞,杨继博
作者信息 +

Radial phononic crystal structure with unilateral periodic ring resonance

  • L Ruixiang, LI Lixia, YANG JiboRadial phononic crystal structure with unilateral periodic ring resonance
Author information +
文章历史 +

摘要

对于大量应用于工业设备中的盘类结构,其往往作为设备中低频振动的载体或者传播体,本文基于局域共振机制设计并研究了一种对盘类结构振动可以产生有效抑制的单边周期环形谐振径向声子晶体结构。通过计算其结构的能带图,得到起始频率低于0.016并且宽度为0.064的低频带隙。进一步分析其能带图中特殊点本征位移场探讨了带隙的形成机制。同时计算了有限周期的频现函数曲线,验证了结构能带图的准确性。最后研究并探讨了结构参数变化对带隙的影响机制。

Abstract

For a large number of disk structures used in industrial equipment, they are often taken as carriers or propagators of low-frequency vibration. Here, based on the local resonance theory, a radical phononic crystal structure with unilateral periodic ring resonance was designed and studied to effectively suppress vibration of disk structures. By calculating its structure energy band diagram, a low frequency band gap with an initial frequency of less than 0.016 and a width of 0.064 was obtained. Furthermore, the intrinsic displacement field of special points in the energy band diagram was analyzed to explore the formation mechanism of band gap. At the same time, the frequency occurrence function curve of finite period was calculated to verify the correctness of the structure energy band diagram. Finally, the influence mechanism of structural parameters on band gap was studied and discussed.

关键词

径向声子晶体 / 局域共振 / 带隙 / 振动控制

Key words

radial phononic crystal / local resonance / band gap / vibration control

引用本文

导出引用
吕锐翔,李丽霞,杨继博. 单边周期环形谐振径向声子晶体结构[J]. 振动与冲击, 2021, 40(1): 68-72
L Ruixiang, LI Lixia, YANG Jibo. Radial phononic crystal structure with unilateral periodic ring resonance[J]. Journal of Vibration and Shock, 2021, 40(1): 68-72

参考文献

[1] Mead D J . Free wave propagation in periodically supported, infinite beams[J]. Journal of Sound and Vibration, 1970, 11(2):181-197.
[2] Mead D.J. A New Method of Analyzing Wave Propagation in Periodic Structures: Applications to Periodic Timoshenko Beams and Stiffened Plates[J]. Journal of Sound and Vibration, 1986, 104(1): 9-27.
[3] 张印,尹剑飞,温激鸿,郁殿龙. 基于质量放大局域共振型声子晶体的低频减振设计[J]. 振动与冲击, 2016, 35(17): 26-32. 
ZHANG Yin YIN JianFei WEN JiHong YU DianLong . Low frequency vibration reduction design based on an inertial amplification locally resonant phononic crystals. JOURNAL OF VIBRATION AND SHOCK, 2016, 35(17): 26-32.
[4] Kushwaha M S , Halevi P , Dobrzynski L , et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13):2022-2025.
[5] 罗金雨,姚凌云,江国期,吴飞. 一种圆柱壳类声子晶体振动带隙及振动特性研究[J]. 振动与冲击, 2019, 38(8): 133-138. 
LUO Jinyu,YAO Lingyun,JIANG Guoqi,WU Fei. A study on the vibration band gap and vibration characteristics of a cylindrical shell phononic crystal. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(8): 133-138.
[6] Martínezsala R, Sancho J, Sánchez J V, et al. Sound attenuation by sculpture[J]. Nature, 1995, 378(6554):241.
[7] Liu Z.Y., Zhang X.J. Mao Y.W., et al. Locally Resonant Sonic Materials [J]. Science, 2000, 289(5485): 1734-1736.
[8] Torrent D , Sánchez-Dehesa, José. Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves[J]. Physical Review Letters, 2009, 103(6):064301.
[9] Torrent D , Sánchez-Dehesa, José. Acoustic resonances in two-dimensional radial sonic crystal shells[J]. New Journal of Physics, 2010, 12(7):073034.
[10] Spiousas I , Torrent D , José SánchezDehesa. Experimental realization of broadband tunable resonators based on anisotropic metafluids[J]. Applied Physics Letters, 2011, 98(24):452.
[11] Xu Z , Wu F , Guo Z . Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals[J]. Physics Letters A, 2012, 376(33):2256---2263.
[12] Shu H , Zhao L , Shi X , et al. Torsional wave propagation in a circular plate of piezoelectric radial phononic crystals[J]. Journal of Applied Physics, 2015, 118(18):2159-2164.
[13] Ma T , Chen T , Wang X , et al. Band structures of bilayer radial phononic crystal plate with crystal gliding[J]. Journal of Applied Physics, 2014, 116(10).
[14] Li Y , Chen T , Wang X , et al. Propagation of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations[J]. Journal of Applied Physics, 2014, 115(5):054907.
[15] An S , Shu H , Liang S , et al. Band gap characteristics of radial wave in a two-dimensional cylindrical shell with radial and circumferential periodicities[J]. AIP Advances, 2018, 8(3):035110.
[16] Shi X , Shu H , Zhu J , et al. Research on wave bandgaps in a circular plate of radial phononic crystal[J]. International Journal of Modern Physics B, 2016:1650162.
[17] Shu H S , Wang X G , Liu R , et al. Bandgap analysis of cylindrical shells of generalized phononic crystals by transfer matrix method[J]. International Journal of Modern Physics B, 2015:1550176.
[18] Liu W, Wang D, Lu H, et al. Research on radial vibration of a circular plate[J]. Shock and Vibration, 2016, 2016.
[19] Li Y , Zhou Q , Zhu L , et al. Hybrid radial plate-type elastic metamaterials for lowering and widening acoustic bandgaps[J]. International Journal of Modern Physics B, 2018.
[20] Gao N, Hou, Hong, Wu, Jiu Hui, et al. Low frequency band gaps below 10 Hz in radial flexible elastic metamaterial plate[J]. Journal of Physics D: Applied Physics, 2016, 49(43):435501.
[21] Thomson W T . Theory of vibration with applications[M]. Prentice-Hall, 1972.

PDF(1436 KB)

401

Accesses

0

Citation

Detail

段落导航
相关文章

/