基于三阶剪切变形理论的压电功能梯度板静力学等几何分析

刘涛1,2,李朝东1,汪超2,蒋雅芬3,刘庆运2

振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 73-85.

PDF(3217 KB)
PDF(3217 KB)
振动与冲击 ›› 2021, Vol. 40 ›› Issue (1) : 73-85.
论文

基于三阶剪切变形理论的压电功能梯度板静力学等几何分析

  • 刘涛1,2,李朝东1,汪超2,蒋雅芬3,刘庆运2
作者信息 +

Static iso-geometric analysis of piezoelectric functionally graded plate based on third-order shear deformation theory

  • LIU Tao1,2,  LI Chaodong1,  WANG Chao2,  JIANG Yafen3,  LIU Qingyun2
Author information +
文章历史 +

摘要

针对压电功能梯度板的静力学问题,建立了一种基于三阶剪切变形理论的等几何分析求解方法。其中,定义功能梯度板的材料属性为板厚方向的幂函数分布,并假设压电功能梯度板中的机械位移场与电势场相互独立。首先,利用压电材料的第二类本构方程以及哈密顿变分原理,推导出压电功能梯度板的相关等几何有限元方程。其次,在压电功能梯度板的自由振动分析中,研究了各类机械边界条件的等几何数值方法的收敛性及精度问题。并分析了开短、路状电学边界条件、功能梯度指数n、功能梯度层的宽厚比、压电层与功能梯度层的厚度比对其固有频率的影响。最后,分析了机械载荷、电载荷以及机电耦合情况下,压电功能梯度板的静态弯曲行为,并利用位移反馈控制规律实现了压电功能梯度板的闭环变形控制。通过算例及相关文献对比,表明了本文求解方法的精确性和可靠性。

Abstract

Aiming at the static problem of a piezoelectric functionally graded plate (PFGP), an iso-geometric analysis method based on the third order shear deformation theory was proposed. The material properties of PFGP were assumed to be a power function distribution along plate thickness, and its mechanical displacement field and electric potential field were assumed to be independent of each other. Firstly, using the second type constitutive equation of piezoelectric materials and Hamilton principle, the iso-geometric finite element equations of a PFGP were derived. Secondly, in its free vibration analysis, convergence and accuracy of the proposed method for PFGP’s various mechanical boundary conditions were studied, and the effects of electrical boundary conditions, functional gradient index n, width to thickness ratio of functional gradient layer, and thickness ratio of functional gradient layer to piezoelectric layer on PFGP’s natural frequencies were analyzed. Finally, static bending behaviors of PFGP under mechanical load, electrical load and electro-mechanical coupling condition were analyzed, respectively and a displacement feedback control law was used to realize a close-loop deformation control of PFGP. Several examples’ results obtained with the proposed method were compared with those published in relevant literatures to demonstrate the reliability and accuracy of the proposed method.

关键词

等几何分析 / 压电功能梯度板 / 三阶剪切变形理论 / 自由振动 / 静态弯曲

Key words

iso-geometric analysis / piezoelectric functionally graded plate / third order shear deformation theory / free vibration / static bending

引用本文

导出引用
刘涛1,2,李朝东1,汪超2,蒋雅芬3,刘庆运2. 基于三阶剪切变形理论的压电功能梯度板静力学等几何分析[J]. 振动与冲击, 2021, 40(1): 73-85
LIU Tao1,2, LI Chaodong1, WANG Chao2, JIANG Yafen3, LIU Qingyun2. Static iso-geometric analysis of piezoelectric functionally graded plate based on third-order shear deformation theory[J]. Journal of Vibration and Shock, 2021, 40(1): 73-85

参考文献

[1] Reddy JN. Analysis of functionally graded plates [J]. International Journal for Numerical Methods in Engineering, 2000, 47(1-3):663-684.
[2] Sobczak JJ, Drenchev L. Metallic functionally graded materials: a specific class of advanced composites [J]. Journal of Materials Science and Technology, 2013, 29(4):297-316.
[3] Naebe M, Shirvanimoghaddam K. Functionally graded materials: A review of fabrication and properties [J]. Applied Materials Today, 2016, 5:223-245.
[4] 闫晓磊,钟志华,查云飞,等. 功能梯度材料飞轮转子优化设计[J]. 机械工程学报,2011, 47(2):72-79.
YAN Xiaolei, ZHONG Zhihua, ZHA Yunfei, et al. Optimum design of flywheel rotor made of functionally graded materials [J]. Journal of Mechanical Engineering, 2011, 47(2):72-79.
[5] 栾桂冬,张金铎,王仁乾. 压电换能器和换能器阵[M]. 北京:北京大学出版社,2005.
LUAN Guidong, ZHANG Jinduo, WANG Renqian. Piezoelectric Transducer and Arrays [M]. Beijing: Peking University Press, 2005.
[6] 李双蓓,吴海,莫春美. 基于样条无网格法的厚/薄压电功能梯度板动力分析[J]. 振动与冲击, 2017, 36 (7): 116-122.
LI Shuangbei, WU Hai, MO Chunmei. Dynamic analysis of thick /thin piezoelectric FGM plates with spline mesh-less method [J]. Journal of Vibration and shock, 2017, 36 (7):116-122.
[7] 时运来,程丁继,张军,等. 拉压负载下的大推力压电直线作动器[J]. 光学精密工程, 2019, 27 (04): 99-108.
SHI Yunlai, CHENG Dingji, ZHANG Jun, et al. Large-thrust piezoelectric linear actuator under tension and pressure load [J]. Optics and Precision Engineering, 2019, 27 (04): 99-108.
[8] He XQ, Ng TY, Sivashanker S, et al. Active control of FGM plates with integrated piezoelectric sensors and actuators [J]. International Journal of Solids and Structures, 2001, 38:1641-1655.
[9] Loja MAR, Soares CMM, Barbosa JI. Analysis of functionally graded sandwich plate structures with piezoelectric skins, using B-spline finite strip method [J]. Composite Structures, 2013, 96: 606-615.
[10] Liew KM, He XQ, Ng TY, et al. Active control of FGM plates subjected to a temperature gradient: Modelling via finite element method based on FSDT [J]. International Journal for Numerical Methods in Engineering. 2001, 52:1253-1271.
[11] Liew KM, Sivashanker S, He XQ, et al. The modelling and design of smart structures using functionally graded materials and piezoelectrical sensor/actuator patches [J]. Smart Materials and Structures, 2003, 12: 647-655.
[12] Nourmohammadi H, Behjat B. Geometrically nonlinear analysis of functionally graded piezoelectric plate using mesh-free RPIM [J]. Engineering Analysis with Boundary Elements, 2019, 99:131-141.
[13] Chen XL, Zhao ZY, Liew KM. Stability of piezoelectric FGM rectangular plates subjected to non-uniformly distributed load, heat and voltage [J]. Advances in Engineering Software, 2008, 39(2):121-131.
[14] Dai KY, Liu GR, Han X, et al. Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method [J]. Computers and Structures, 2005, 83:1487-1502.
[15] 刘玮,闫铂. 具有压电元件的功能梯度弹性薄板的振动特性[J]. 振动与冲击, 2007, 26 (5): 1-3.
LIU Wei, YAN Bo. Vibration characteristics of functional gradient thin elastic plates bonded with piezoelectric patches [J]. Journal of Vibration and shock, 2007, 26 (5): 1-3.
[16] 仲政,吴林志,陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5):528-541.
ZHONG Zheng, WU Linzhi, CHEN Weiqiu. Progress in the study on mechanics problems of functionally graded materials and structures [J]. Advances in Mechanics, 2010, 40(5):528-541 (in Chiniese
[17] Hussein OS, Mulani SB. Multi-dimensional optimization of functionally graded material composition using polynomial expansion of the volume fraction [J]. Structural and Multidisciplinary Optimization, 2017, 56(2): 271-284.
[18] Belinha J, Araújo AL, Ferreira AJM, et al. The analysis of laminated plates using distinct advanced discretization meshless techniques [J]. Composite Structures, 2016, 143:165-179.
[19] Sladek J, Stanak P, Han Z, et al. Applications of the MLPG method in engineering & sciences: a review [J]. Computer Modeling in Engineering & Sciences, 2013, 92(5):423-475.
[20] Loja MAR, Soares CMM, Barbosa JI. Analysis of functionally graded sandwich plate structures with piezoelectric skins, using B-spline finite strip method [J]. Composite Structures, 2013, 96: 606-615.
[21] Fakhari V, Ohadi A. Nonlinear vibration control of functionally graded plate with piezoelectric layers in thermal environment[J]. Journal of Vibration and Control, 2011, 17(3):449-469.
[22] Fakhari V, Ohadi A, Yousefian P. Nonlinear free and forced vibration behavior of functionally graded plate with piezoelectric layers in thermal environment [J]. Composite Structures, 2011, 93(9): 2310-2321.
[23] Karamanl A. Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory [J]. Composite Structures, 2018, 189: 127-136.
[24] Nguyen HN, Tan TC, L DT, et al. Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory [J]. Materials, 2019, 12: 1262.
[25] Duc ND, Tuan ND, Tran P, et al. Nonlinear dynamic analysis of Sigmoid functionally graded circular cylindrical shells on elastic foundations using the third order shear deformation theory in thermal environments [J]. International Journal of Mechanical Sciences, 2015, 101-102:338-348.
[26] Selim BA, Zhang LW, Liew KM. Active vibration control of FGM plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory [J]. Composite Structures, 2016, 155:118-134.
[27] Wang C, Yu T, Shao G, et al. Shape optimization of structures with cutouts by an efficient approach based on XIGA and chaotic particle swarm optimization [J]. European Journal of Mechanics-A/Solids, 2019, 74: 176-187.
[28] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NU1RBS, exact geometry and mesh refinement [J]. Computer Methods in Applied Mechanics & Engineering, 2005, 194(39): 4135-4195.
[29] Tran L V, Ferreira A J M, Nguyen-Xuan H. Isogeometric analysis of functionally graded plates using higher-order shear deformation theory [J]. Composites Part B: Engineering, 2013, 51:368-383.
[30] Jari H, Atri H R, Shojaee S. Nonlinear thermal analysis of functionally graded material plates using a NURBS based isogeometric approach [J]. Composite Structures, 2015, 119:333-345.
[31] Cong P H, Anh V M, Duc N D. Nonlinear dynamic response of eccentrically stiffened FGM plate using Reddy’s TSDT in thermal environment [J]. Journal of Thermal Stresses, 2016:1-29.
[32] Phung-Van P, Ferreira A J M, Nguyen-Xuan H, et al. An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates [J]. Composites Part B: Engineering, 2017, 118:125-134.
[33] Lieu Q X, Lee J. Modeling and optimization of functionally graded plates under thermo-mechanical load using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm [J]. Composite Structures, 2017, 179:89-106.
[34] Lieu Q X, Lee J, Lee D, et al. Shape and size optimization of functionally graded sandwich plates using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm [J]. Thin-Walled Structures, 2018, 124:588-604.
[35] Phung-Van P, Tran LV, Ferreira AJM, et al. Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads [J]. Nonlinear Dynamics, 2017, 87: 879-894.
[36] Nguyen LB, Nguyen NV, Nguyen-Xuan H, et al. An isogeometric Bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets [J]. Composite Structures, 2019, 214: 227-245.
[37] Nguyen-Quang K, Vo-Duy T, Dang-Trung H, et al. An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers [J]. Computer Methods in Applied Mechanics & Engineering 2018, 332: 25-46.
[38] Reddy JN. A simple higher-order theory for laminated composite plates [J]. Journal of Applied Mechanics, 1984, 51(4): 745-752.
[39] 李双蓓.压电智能结构分析的新方法研究及其应用[D]. 广西:广西大学, 2012.
LI Shuangbei. Research and application of the new analysis methods for piezoelectric smart Structures [D]. Guangxi: Guangxi university,2012.
[40] 王春雷, 李吉超, 赵明磊.压电铁电物理[M]. 北京:科学出版社,2009.
WANG Chunlei, LI Jichao, ZHAO Minglei. Physics of Piezoelectrics and Ferroelectrics [M]. Beijing: Science Press, 2009.
[41] Reddy JN. Mechanics of laminated composite plates and shells: Theory and analysis [M]. CRC Press, 2004.
[42] 傅晓锦,龙凯,周利明,等.基于等几何剪裁分析的拓扑与形状集成优化[J]. 振动与冲击, 2015, 35(7):162-173.
FU Xiaojin,LONG Kai, ZHOU Liming, et al. Integration of Topology and Shape Optimization Design of Continuum Structure Based on Isogeometric Trimmed Surface Analysis [J]. Journal of Vibration and shock, 2012, 44(2):371-381.
[43] Wang SY. A finite element model for the static and dynamic analysis of a piezoelectric bimorph [J]. International Journal of Solids and Structures, 2004, 41: 4075-4096.
[44] Askari Farsangi MA, Saidi AR. Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers [J]. Smart Materials and Structures, 2012, 21(9): 94017.
[45] Phung-Van P, Nguyen-Thoi T, Le-Dinh T, et al. Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3) [J]. Smart Materials and Structures, 2013, 22(9): 095026.
[46] Li S, Huang L, Jiang L, et al. A bidirectional B-spline finite point method for the analysis of piezoelectric laminated composite plates and its application in material parameter identification [J]. Composite Structures, 2014, 107:346-362.
[47] Tzou HS. Development of a light-weight robot end-effect using polymeric piezoelectric bimorph [C]. Proceeding of the 1989 IEEE International Conference on Robotics and Automation. May 14-19; 1989:1704-1709.
[48] Nguyen-Quang K, Dang-Trung H, Nguyen-Thoi T, et al. Analysis and control of FGM plates integrated with piezoelectric sensors and actuators using cell-based smoothed discrete shear gap method (CS-DSG3) [J]. Composite Structures, 2017, 165:115-129.

PDF(3217 KB)

456

Accesses

0

Citation

Detail

段落导航
相关文章

/