在滚动轴承早期故障阶段,代表轴承故障特征的冲击成分容易被较强的背景噪声淹没,针对这一问题提出相关峭度(Correlated Kurtosis, CK)优化变分模态分解(Variational Mode Decomposition, VMD)的滚动轴承故障特征提取方法。针对变分模态分解方法参数不确定问题,提出利用以相关峭度为适应度函数的蝗虫优化算法(Grasshopper optimization algorithm, GOA)对变分模态分解参数进行自适应选定。针对故障信号经优化变分模态分解处理后模态分量的筛选问题,以相关峭度为指标,挑选具有最大相关峭度指标的模态分量进行包络解调分析,提取轴承信号中的故障特征信息。仿真及实测信号处理结果证明,该方法能在强噪声背景下准确提取滚动轴承故障信号的微弱特征。
Abstract
In early fault stage of rolling bearing, impulse components to reflect bearing fault features are easy to be submerged by strong background noise. Here, a rolling bearing fault feature extraction method based on correlated kurtosis (CK) and variational mode decomposition (VMD) was proposed to solve this problem. Aiming at the uncertainty of parameters in VMD, the grasshopper optimization algorithm (GOA) with CK as fitness function was proposed to adaptively select parameters of VMD. Aiming at the problem of selecting mode components of the fault signal after processed with the optimized VMD, CK was taken as the index, the mode component with the maximum CK index was selected to do envelope demodulation analysis, and extract fault feature information in bearing signal. The processing results of simulated and really measured signals showed that the proposed method can accurately extract weak features of rolling bearing fault signal under strong background noise.
关键词
滚动轴承 /
强噪声 /
变分模态分解 /
相关峭度 /
蝗虫优化算法
{{custom_keyword}} /
Key words
rolling bearing /
strong noise /
variational mode decomposition (VMD) /
correlated kurtosis (CK) /
grasshopper optimization algorithm (GOA)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 高强,杜小山,范虹,等.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(01):15-18.
Gao Qiang, Du Xiaoshan, Fan Hong, et al. An empirical mode decomposition based method for rolling bearing fault diagnosis [J]. Journal of Vibration Engineering, 2007, 20(01):15-18.
[2] 罗忠辉,薛晓宁,王筱珍,等.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129.
Luo Zhonghui, Xue Xiaoning, Wang Xiaozhen, et al. Study on the method of incipient motor bearing fault diagnosis based on wavelet transform and EMD [J]. Proceeding of the CSEE, 2005,25(14):125-129.
[3] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilibert spectrum for nonlinear and non-stationary time series analysis [J]. Proceeding of the Royal Society: A, 1998(454): 903-993.
[4] 杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(01):87-90+138-139.
Yang yu, Yu Dejie, Cheng Junsheng. Roller bearing fault diagnosis method based on EMD and netural network [J]. Journal of Vibration and Shock, 2005,24(01):87-90+138-139.
[5] 苏文胜,王奉涛,张志新,等.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010,29(03):18-21+201.
Su Wensheng, Wang Fengtao, Zhang Zhixin, et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings [J]. Journal of Vibration and Shock, 2010,29(03):18-21+201.
[6] Dragomiretskiy K, Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[7] 向玲,张力佳.变分模态分解在转子故障诊断中的应用[J].振动.测试与诊断,2017,37(04):793-799+847.
Xiang Ling, Zhang Lijia. Application of Variational Mode Decomposition in Fault Diagnosis of Rotors [J]. Journal of Vibration, Measurement & Diagnosis, 2017,37(04):793-799+847.
[8] 赵洪山,郭双伟,高夺.基于奇异值分解和变分模态分解的轴承故障特征提取[J].振动与冲击,2016,35(22):183-188.
Zhao Hongshan, Guo Shuangwei, Gao Duo. Fault feature extraction of bearing faults based on singular value decomposition and variational modal decomposition [J]. Journal of Vibration and Shock, 2016,35(22):183-188.
[9] 马增强,李亚超,刘政,等. 基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击,2016,35(13):134-139.
Ma Zengqiang, Li Yachao, Liu Zheng, et al. Rolling bearings' fault feature extraction based on variational mode decomposition and Teager energy operator [J]. Journal of Vibration and Shock, 2016,35(13):134-139.
[10] 唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(05):73-81.
Tang Guiji, Wang Xiaolong. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing [J]. Journal of Xi'an Jiaotong University, 2015,49(05):73-81.
[11] Shahrzad Saremi, Seyedali Mirjalili, Andrew Lewis. Grasshopper Optimisation Algorithm: Theory and application. Advances in Engineering Software,2017,105:30-47.
[12] McDonald G L, Zhao Q, Zuo M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection [J]. Mechanical Systems and Signal Processing, 2012,33:237-255.
[13] Antoni J, Bonnardot F, Raad A, et al. Cyclostationary modeling of rotating machine vibration signals [J]. Mechanical Systems and Signal Process, 2004,18 (6):1285-1314.
[14] Case Western Reserve University Bearing Data Center [EB/OL]. [2012-12-07].
http://csegroups.case.edu/bearingdatacenter/home
[15] Wade A. S, R.B Randall. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]. Mechanical Systems and Signal Processing, 2015, 64-65: 100-131.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}