综合大质量偏心与弹簧横向刚度超静主动隔振平台动力学解耦控制研究

杨鸿杰1,2,代锋3,刘磊1,2,李新国1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 1-9.

PDF(2746 KB)
PDF(2746 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 1-9.
论文

综合大质量偏心与弹簧横向刚度超静主动隔振平台动力学解耦控制研究

  • 杨鸿杰1,2,代锋3,刘磊1,2,李新国1,2
作者信息 +

Dynamic decoupling control of super static active vibration isolation platform with large mass eccentricity and spring lateral stiffness

  • YANG Hongjie1,2, DAI Feng3, LIU Lei1,2, LI Xinguo1,2
Author information +
文章历史 +

摘要

针对载荷大质量偏心和弹簧横向刚度诱发超静主动隔振平台多自由度动力学耦合问题,研究隔振平台动力学耦合特性和解耦隔振控制方法。首先,综合载荷质量偏心和弹簧横向刚度的影响建立主动隔振平台多自由度耦合动力学模型。随后,根据所建立的模型分析动力学耦合下主动隔振平台的扰动传递特性,推导耦合谐振频率与弹簧刚度、载荷质量偏心之间的解析关系。最后,给出模态空间下隔振平台动力学解耦控制方法,开发基于音圈电机的主动隔振实验平台,通过实验验证动力学模型的准确性和模态解耦隔振控制方法的有效性。

Abstract

Aiming at the multi-degree-of-freedom dynamic coupling problem of the ultra-quiet active vibration isolation platform induced by the eccentricity of isolated payload and the transverse stiffness of spring, the dynamic coupling characteristics of the vibration isolation platform and the decoupling vibration isolation control method are studied. Integrating the influence of the payload mass eccentricity and the spring transverse stiffness, a coupled dynamic model of the ultra-quiet active vibration isolation platform is first established. Subsequently, according to the established dynamic model, the dynamic coupling characteristics of the vibration isolation platform are analyzed, and the analytical relationship among coupling resonance frequency, spring transverse stiffness, and payload mass eccentricity is given. Finally, a decoupling vibration isolation control method based on modal space is presented, and an active vibration isolation platform based on voice coil motors is developed. The accuracy of the established dynamic model and the effectiveness of the modal decoupling vibration isolation control method are verified through experiments.

关键词

主动隔振 / 微振动 / 模态变换 / 动力学耦合 / 解耦控制

Key words

active vibration isolation / micro-vibration / modal transformation / dynamic coupling / decoupling control

引用本文

导出引用
杨鸿杰1,2,代锋3,刘磊1,2,李新国1,2. 综合大质量偏心与弹簧横向刚度超静主动隔振平台动力学解耦控制研究[J]. 振动与冲击, 2023, 42(1): 1-9
YANG Hongjie1,2, DAI Feng3, LIU Lei1,2, LI Xinguo1,2. Dynamic decoupling control of super static active vibration isolation platform with large mass eccentricity and spring lateral stiffness[J]. Journal of Vibration and Shock, 2023, 42(1): 1-9

参考文献

[1] He K, Li Q, Liu L, et al. Active vibration isolation of ultra-stable optical reference cavity of space optical clock[J]. Aerospace Science and Technology, 2021, 112:106633.
[2] DENNEH C, ALVAREZ O S. Spacecraft micro-vibration: a survey of problems, experiences, potential solutions, and some lessons learned[R]. 18-2645, Pasadena, CA: Jet Propulsion Laboratory , 2018.
[3] HYDE T T, HA K Q, JOHNSTON J D, et al. Integrated modeling activities for the James Webb Space Telescope: optical jitter analysis[C]//MATHER J C. Optical, Infrared, and Millimeter Space Telescopes. International Society for Optics and Photonics, 2004, 5487: 588.
[4] 李林,袁利,王立,郑然,等. 从哈勃太空望远镜剖析微振动对高性能航天器指向测量与控制系统的影响[J].光学精密工程,2020,28(11):2478-2487.
LI L, YUAN L, WANG L, et al. Influence of micro vibration on measurement and pointing control system of high-performance spacecraft from Hubble space telescope [J]. Optics and Precision Engineering, 2020,28(11):2478-2487.
[5] 孟光,周徐斌.卫星微振动及控制技术进展[J].航空学报,2015,36(08):2609-2619.
MENG G, ZHOU X B. Progress review of satellite micro-vibration and control[J]. Acta Aeronautica et Astronautica Sinica, 2015,36(08):2609-2619.
[6] 王光远, 周东强, 赵煜. 遥感卫星在轨微振动测量数据分析[J]. 宇航学报, 2015, 36(003):261-267.
WANG G Y, ZHOU D Q, ZHAO Y. Data Analysis of Micro-Vibration on-Orbit Measurement for Remote Sensing Satellite [J]. Journal of Astronautics 2015, 36(003):261-267.
[7] LIN L, LI Y, LI W et al. Recent advances in precision measurement & pointing control of spacecraft[J]. Chinese Journal of Aeronautics, 2021, 34(10):191-209.
[8] LIU C, JING X, DALEY S et, al. Recent advances in micro-vibration isolation[J]. Mechanical Systems and Signal Processing, 2015, 56: 55–80.
[9] 王云峰,李博,王利桐. 两端固支屈曲梁准零刚度隔振器的微振动隔振性能分析[J]. 振动与冲击, 2018, 37(15): 124-129.
WANG Yunfeng,LI Bo,WANG Litong. Micro-vibration isolation performance of a clamped-clamped buckled beam quasi-zero-stiffness isolator. Journal of vibration and shock, 2018, 37(15): 124-129.
[10] 武倩倩, 崔宁, 刘碧龙,等. 多维磁悬浮隔振系统动力学模型与控制策略[J]. 航空学报, 2019, 040(006):148-158.
WU Q Q, CUI N, LIU B L, et al. Dynamic model and control strategy of multi-dimentional maglev vibration isolation system[J]. Aeronautica et Astronautica Sinica, 2019, 040(006):148-158.
[11] 杨鸿杰, 刘磊, 李新国,等. 超静超稳卫星碰振动力学建模[J]. 宇航学报, 2019, 040(008):861-869.
YANG H J, LIU L, LI X G, et al. Vibro-Impact Modeling for Disturbance-Free Payload Satellite[J]. Journal of Astronautics, 2019, 040(008):861-869.
[12] 庞岩,李静,刘磊.柔性线缆连接的分离式卫星动力学建模[J].宇航学报,2017,38(01):1-9.
PANG Y, LI J, LIU L. Dynamics Modeling of the Separated Satellite with Flexible Cable[J]. Journal of Astronautics, 2017,38(01):1-9.
[13] 王嘉登,张高雄,茅敏,等. 卫星控制力矩陀螺微振动抑制装置的动力学建模与实验研究[J].振动与冲击, 2021,40(01):1-7.
WANG J D, ZHANG G X, MAO M, et al. Dynamic modeling and tests of a micro-vibration suppression device for satellite control moment gyroscope[J]. Journal of vibration and shock, 2021,40(01):1-7.
[14] 孟光,董瑶海,周徐斌,等. 风云四号卫星微振动抑制和试验技术研究[J].中国科学:物理学 力学 天文学,2019,49(02):74-84.
MENG G, DONG Y H, ZHOU X B, et al. Research on Micro-vibration Control and Testing of FY-4 Meteorological satellite[J]. Scientia Sinica Physica, Mechanica & Astromomica, 2019,49(02):74-84.
[15] 潘公宇, 陈磊, 李东,等. 用于微振动控制的主动隔振单元的研究[J]. 振动与冲击, 2018, 037(014):227-230.
PAN G Y, CHEN L, LI D, et al. Active isolation unit for the micro-vibration control[J]. Journal of vibration and shock, 2018, 037(014):227-230.
[16] 王超新, 刘兴天, 张志谊. 基于立方体STEWART的微振动主动控制分析与实验[J]. 振动与冲击, 2017, 36(005):208-213.
WANG C X, LIU X T, ZHANG Z Y. Micro-vibration active control for a Stewart platform with a cubic configuration[J]. Journal of vibration and shock, 2017, 36(005):208-213.
[17] 李乔博, 王超新, 黄修长,等. 基于Stewart平台微振动主动控制分析与实验[J]. 噪声与振动控制, 2016, 36(3):214-218.
LI Q B, WANG C X, HUANG X C. Analysis and Experiment of Micro-vibration Active Control Based on a Stewart Platform[J]. Noise and Vibration Control, 2016, 36(3):214-218.
[18] Yun H , Liu L , Li Q , et al. Development of an isotropic Stewart platform for telescope secondary mirror[J]. Mechanical Systems and Signal Processing, 2019, 127(JUL.15):328-344.
[19] McInroy J E. Modeling and design of flexure jointed Stewart platforms for control purposes[J]. IEEE/ASME transactions on mechatronics, 2002, 7(1): 95-99.
[20] F Kerber, Hurlebaus S , Beadle B M , et al. Control concepts for an active vibration isolation system[J]. Mechanical Systems & Signal Processing, 2007, 21(8):3042-3059.
[21] COBB R G, SULLIVAN J M, DAS A, et al. Vibration isolation and suppression system for precision payloads in space[J]. Smart Materials and Structures, 1999, 8(6): 798–812.
[22] 张培军, 何琳, 帅长庚,等. 主动隔振系统解耦控制算法仿真与试验研究[J]. 振动与冲击, 2013(19):192-196.
ZHANG P J, HE L, SHUAI C G, et al. Simulation and test for a decoupled control algorithm used in an active vibration isolation system[J]. Journal of vibration and shock, 2013(19):192-196.
[23] 王晓雷, 杨庆俊, 郑钢铁. 八作动器隔振平台的通道耦合分析及解耦控制[J]. 宇航学报, 2007, 28(004):1007-1011.
WANG Xiaolei,YANG Qingjun,ZHENG Gangtie. Decoupling analysis and decoupling control of vibration isolation platform with eight actuators[J]. Journal of Astronautics, 2007, 28(4):1007-1011.
[24] 于帅彪, 张臻, 周克敏. 六自由度压电隔振平台面向控制的模态分析与动力学建模[J]. 北京航空航天大学学报, 2020,46(6):1169-1176.
YU S B, ZHANG Z, ZHOU K M. Control-oriented modal analysis and dynamic modeling for six-degree-of-freedom piezoelectric vibration isolation platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020,46(6):1169-1176.
[25] Wang X, Li Q, Yang H, et al. Design and Realization of Broadband and High Precision IEPE Accelerometer Signal Conditioner[C]//2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2021: 1164-1169.

PDF(2746 KB)

413

Accesses

0

Citation

Detail

段落导航
相关文章

/