球缺型EFP毁伤混凝土墙试验与数值仿真研究

郝礼楷1,2,顾文彬1,张亚栋3,原奇4,邹绍昕1,刘明君5,刘森琪2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 10-18.

PDF(2821 KB)
PDF(2821 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 10-18.
论文

球缺型EFP毁伤混凝土墙试验与数值仿真研究

  • 郝礼楷1,2,顾文彬1,张亚栋3,原奇4,邹绍昕1,刘明君5,刘森琪2
作者信息 +

Tests and numerical simulation for hemispherical EFP penetrator damaging a concrete wall

  • HAO Likai1,2, GU Wenbin1, ZHANG Yadong3, YUAN Qi4, ZOU Shaoxin1, LIU Mingjun5, LIU Sengqi2
Author information +
文章历史 +

摘要

为深入研究混凝土类目标在聚能装药作用下的侵彻效应和毁伤机理,设计一种大口径Φ 120 mm 球缺型EFP聚能装药,开展不同炸高下毁伤大尺寸混凝土墙试验。基于修正参数的RHT模型进行数值仿真,仿真结果与试验数据的最大相对误差为9.8 %,表明RHT模型的修正效果较好,数值模型可靠。在此基础上,分析炸高对毁伤效果的影响,并对EFP侵彻体与爆炸冲击波的联合毁伤元特性进行研究。结果表明,所设计的EFP聚能装药毁伤混凝土墙时,能够形成具有较大直径和深度的漏斗坑;炸高为20 cm至60 cm时,随着炸高的增大,漏斗坑直径逐渐减小,漏斗坑深度呈先减小再增大再减小,并逐渐稳定的趋势;炸高为20 cm(1.67倍装药直径)时,能够获得直径和深度都较大的漏斗坑,此时漏斗坑直径为6.83倍装药直径,漏斗坑深度为2.3倍装药直径;EFP侵彻对漏斗坑的形成起主导作用,在一定炸高范围内,爆炸冲击波对漏斗坑直径有增大作用,其与EFP侵彻体的耦合能够在一定程度上提高漏斗坑深度。

Abstract

To deeply study the penetration effect and damage mechanism of concrete targets under the action of the shaped charge, Φ 120 mm EFP with hemispherical liner was designed to carry out experiments of penetrating a concrete wall at different standoff distances. Based on the RHT model with modified parameters, the maximum relative error between simulation results and experimental data is 9.8 %, indicating that the RHT model has a good correction effect and the numerical model is reliable. On this basis, the impact of the standoff distance on the penetration damage effect is analyzed, and the combined damage element characteristics of the EFP penetrator and the explosion shock wave are studied. The results show that when the designed EFP penetrates the concrete wall, a funnel pit with a large diameter and depth is formed on the wall. When the standoff distance changes from 20 cm to 60 cm, with the increase of blasting height, the diameter of the funnel pit decreases gradually, and the depth of the funnel pit decreases first, then increases and then decreases, and tends to be stable. When the standoff distance is 20 cm (1.67 times of charge diameter), the funnel pit with a large diameter and depth can be obtained. The diameter is about 6.83 times the charge diameter, and the depth is 2.3 times the charge diameter. EFP penetration plays a leading role in the formation of the funnel pit, and within a certain explosion height range, the explosion shock wave can increase the diameter of the funnel pit, and its coupling with the EFP penetrator can improve the depth of the funnel pit to a certain extent.

关键词

球缺罩 / 爆炸成型弹丸(EFP) / 侵彻 / 爆炸冲击波 / 混凝土 / 漏斗坑

Key words

hemispherical liner / explosively formed projectile (EFP) / penetration / explosion shock / concrete / funnel pit

引用本文

导出引用
郝礼楷1,2,顾文彬1,张亚栋3,原奇4,邹绍昕1,刘明君5,刘森琪2. 球缺型EFP毁伤混凝土墙试验与数值仿真研究[J]. 振动与冲击, 2023, 42(1): 10-18
HAO Likai1,2, GU Wenbin1, ZHANG Yadong3, YUAN Qi4, ZOU Shaoxin1, LIU Mingjun5, LIU Sengqi2. Tests and numerical simulation for hemispherical EFP penetrator damaging a concrete wall[J]. Journal of Vibration and Shock, 2023, 42(1): 10-18

参考文献

[1] 王成, 王万军, 宁建国. 聚能装药对混凝土靶板的侵彻研究[J]. 力学学报, 2015, 47(4): 672-686.
WANG Cheng, WANG Wanjun, NING Jianguo. Investigation on shaped charge penetrating into concrete targets. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 672-686.
[2] 许香照, 马天宝, 郝莉. 大口径聚能装药侵彻厚混凝土靶板的数值模拟及实验研究[J]. 中国科学: 技术科学, 2016, 46(4): 339-348.
XU Xiangzhao, MA Tianbao, HAO Li. Experimental and numerical investigation on heavy-caliber shaped-charge penetration in thick concrete target. Scientia Sinica Technologica, 2016, 46: 339–348.
[3] 张毅, 王志军, 崔斌, 等. 不同结构钛合金罩战斗部侵彻混凝土数值模拟[J]. 兵器材料科学与工程, 2015, 38(2): 95-98.
ZHANG Yi, WANG Zhijun, CUI Bin, et al. Numerical simulation on concrete target penetrated by warhead of different titanium alloy shaped charge[J]. Ordnance Material Science and Engineering, 2015, 38(2): 95-98.
[4] WU H, HU F, FANG Q. A comparative study for the impact performance of shaped charge JET on UHPC targets[J]. Defence Technology,2019, 15(4): 506-518.
[5] 林加剑. EFP成型及其终点效应研究[D]. 中国科学技术大学, 2009.
LIN Jiajian. Research on the formability of EFP and its terminal effect[D]. University of Science and Technology of China, 2009.
[6] 杨峰. 药型罩参数对爆炸成型侵彻体影响研究[D]. 北京理工大学, 2015.
YANG Feng. Research of liner parameters on the effects of explosively formed projectiles[D]. Beijing Institute of Technology, 2015.
[7] 许香照, 马天宝, 宁建国. 聚能装药侵彻混凝土数值模拟[J]. 计算机辅助工程, 2015, 24(002):29-35.
XU Xiangzhao, MA Tianbao, NING Jianguo. Numerical simulation on concrete penetration of shaped charge[J]. Computer Aided Engineering, 2015, 24(002):29-35.
[8] HU F, WU H, FANG Q, et al. Impact performance of explosively formed projectile (EFP) into concrete targets[J]. International Journal of Impact Engineering, 2017, 109: 150-166.
[9] 段建, 杨黔龙, 周刚, 等. 爆炸成型弹丸 (EFP) 侵彻混凝土靶实验研究[J]. 弹箭与制导学报, 2005 (SD): 894-896.
DUAN Jian, YANG Qianlong, ZHOU Gang, et al. Experimental studies on explosively formed projectile penetrating concrete target[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005 (SD): 894-896.
[10] WANG C, XU W, BI Y. Investigation on interaction of explosively formed projectile with multi-layer medium targets[J]. The International Journal of Multiphysics, 2017, 11(3): 277-294.
[11] 许香照. 混凝土/钢筋混凝土的侵彻破坏行为研究[D]. 北京理工大学, 2018.
XU Xiangzhao. Research on failure behavior of concrete/reinforced concrete subjected to the penetration loading[D]. Beijing Institute of Technology, 2018.
[12] 李伟建, 郑晴. 爆炸冲击载荷作用下混凝土墙动态响应分析[J]. 计算机仿真, 2016 (2): 27-31.
LI Weijian, ZHENG Qing. Analysis of dynamic response for concrete wall under blast load[J]. Computer Simulation, 2016, 33(02): 27–31.
[13] 吴晗玲, 段卓平, 汪永庆. 杆式射流形成的数值模拟研究[J]. 爆炸与冲击, 2006(04): 328–332.
WU Hanling, DUAN Zhouping, WANG Yongqing. Simulation investigation of rod-like jets[J]. Explosion and Shock Waves, 2006(04): 328–332.
[14] 曹涛, 顾文彬, 刘建青, 等. 起爆点数量对侧向环形聚能装药侵彻能力的影响[J]. 兵器装备工程学报, 2017, 38(12): 106–111.
CAO Tao, GU Wenbin, LIU Jianqin, et al. Effects of detonation points number on annular shaped charge penetration ability[J].Journal of Ordnance Equipment Engineering,2017,38(12):106–111.
[15] 顾文彬, 刘建青, 唐勇,等. 球缺型EFP战斗部结构优化设计研究[J]. 南京理工大学学报(自然科学版), 2008(02):165-170.
GU Wenbin, LIU Jianqin, TANG Yong, et al. Optimizing design of EFP warhead with hemispherical liner[J]. Journal of Nanjing University of Science and Technology(Natural Science), 2008, 32(2):165-170.
[16] ESTEBAN B, LENHART L M, RÜDIGER L, et al. An evaluation of shaped charge experiments using concrete components[J]. International Journal of Protective Structures, 2015, 6(3): 439-455.
[17] 王树有. 串联侵彻战斗部对钢筋混凝土介质的侵彻机理[D]. 南京理工大学, 2006.
WANG Shuyou. Penetration mechanism of reinforced concrete targets by tandem warhead[D]. Nanjing University of Science and Technology, 2006.
[18] THAI D K, KIM S E. Failure analysis of reinforced concrete walls under impact loading using the finite element approach[J]. Engineering Failure Analysis, 2014, 45: 252-277.
[19] 张帅. 弹丸侵彻钢筋混凝土多层靶板的数值模拟分析[D]. 南京理工大学, 2018.
ZHANG Shuai. Numerical simulation analysis of projectile penetrating reinforced concrete multilayer target plate[D]. Nanjing University of Science and Technology, 2018.
[20] 李平. 非均质复合材料静动态力学性能研究[D]. 中国科学技术大学, 2014.
LI Ping. Study on the static-dynamic mechanical properties of heterogeneous composite materials[D]. University of Science and Technology of China, 2014.
[21] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effects of Munitions with Structures. Berlin-Strausberg Germany, 1999, 315.
[22] TU Z, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete[J]. International Journal of Impact Engineering, 2010, 37(10): 1072-1082.
[23] Tu Z, Lu Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering, 2009, 36(1): 132-146.
[24] 张若棋, 丁育青, 汤文辉, 等. 混凝土HJC、RHT本构模型的失效强度参数[J]. 高压物理学报, 2011, 25(01): 15–22.
ZHANG Ruoqi, DING Yuqing, TANG Wenhui, et al. The failure strength parameters of HJC and RHT concrete constitutive models[J]. Chinese Journal of High Pressure Physics, 2011, 25(01): 15–22.
[25] ABDEL-KADER M. Numerical predictions of the behaviour of plain concrete targets subjected to impact[J]. International Journal of Protective Structures, 2018, 9(3): 313-346.
[26] ABDEL-KADER M. Modified settings of concrete parameters in RHT model for predicting the response of concrete panels to impact[J]. International Journal of Impact Engineering, 2019, 132: 103312.
[27] HU G , WU J , LI L . Advanced Concrete Model in Hydrocode to Simulate Concrete Structures under Blast Loading[J]. Advances in Civil Engineering, 2016, 2016:1-13.
[28] NYSTRÖM U, GYLLTOFT K. Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete[J]. International Journal of Impact Engineering, 2011, 38(2-3): 95-105.

PDF(2821 KB)

285

Accesses

0

Citation

Detail

段落导航
相关文章

/