压电致动的谐振式水下柔性结构动态迟滞建模及前馈补偿

王泽锴1,3,娄军强1,2,陈特欢1,邓益民1,崔玉国1,魏燕定2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 115-122.

PDF(2434 KB)
PDF(2434 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 115-122.
论文

压电致动的谐振式水下柔性结构动态迟滞建模及前馈补偿

  • 王泽锴1,3,娄军强1,2,陈特欢1,邓益民1,崔玉国1,魏燕定2
作者信息 +

Dynamic hysteresis modeling and feedforward compensation of MFC actuatedresonant underwater flexible structures

  • WANG Zekai1,3, LOU Junqiang1, 2, CHEN Tehuan1, DENG Yimin1, CUI Yuguo1, WEI Yanding2
Author information +
文章历史 +

摘要

具有运动灵活且操作方便优点的Macro Fiber Composite(MFC) 致动水下柔性结构广泛应用于水下仿生推进和变形控制系统中,但是MFC的迟滞非线性严重影响了系统的定位精度和操控性能。本文提出了一种改进Prandtl-Ishlinskii(PI)静态迟滞和传递函数动态模型串联的复合式模型来描述MFC致动水下柔性结构谐振状态下的动态迟滞行为。首先基于所提出水下结构的准静态迟滞特性辨识得到改进PI迟滞模型参数,然后通过传递函数串联馈通环节的动态模型捕捉MFC致动柔性结构的水下谐振特性。实验结果表明所建立的复合式动态迟滞模型能够很好地描述MFC致动水下柔性结构在谐振状态下的动态迟滞行为,并且在固有频率附近一定带宽范围内仍具有较高准确性。基于复合式逆模型的前馈补偿下,水下柔性结构在谐振状态下跟踪正弦轨迹的实测位移与期望位移基本重合,补偿后二者线性度较高,显著提升了MFC致动柔性结构谐振状态下的动态定位和跟踪精度,证实了所提出动态迟滞模型和补偿方法的有效性。

Abstract

Macro Fiber Composite (MFC) actuated underwater flexible structure with the advantages of motion flexibility and operation convenience, is widely used in underwater bionic propulsion and deformation control systems, nevertheless, the positioning accuracy and control performance are seriously affected by the nonlinear hysteresis of MFC material. In this paper, a compound model containing modified Prandtl-Ishlinskii (MPI) static model and transfer function dynamic model in series is proposed to describe the dynamic hysteresis phenomenon of MFC actuated underwater flexible structure in resonant state. Firstly, the parameters of the MPI model are obtained based on the quasi-static hysteresis characteristics of the proposed underwater flexible structure, and then the underwater resonant characteristics are captured by the dynamic model of the transfer function added feed-through term. The experimental results show that the dynamic hysteresis behavior of MFC actuated resonant underwater flexible structure can be matched relatively well by the proposed compound dynamic hysteresis model and keep high accuracy in a certain bandwidth range near the natural frequency. Based on feedforward compensation of the inverse compound model, the measured displacement of underwater flexible structure in resonant state is essentially coincident with the desired displacement of that in sine trajectory tracking achieving a high compensated linearity and significantly improves the dynamic positioning and tracking accuracy. Accordingly, the effectiveness of the proposed dynamic hysteresis model and compensation method is verified.

关键词

水下柔性结构 / 谐振 / 动态迟滞 / 宏压电纤维复合材料 / 前馈补偿

Key words

Underwater flexible structure / Resonant / Dynamic hysteresis / Macro fiber composite (MFC) / Feedforward compensation

引用本文

导出引用
王泽锴1,3,娄军强1,2,陈特欢1,邓益民1,崔玉国1,魏燕定2. 压电致动的谐振式水下柔性结构动态迟滞建模及前馈补偿[J]. 振动与冲击, 2023, 42(1): 115-122
WANG Zekai1,3, LOU Junqiang1, 2, CHEN Tehuan1, DENG Yimin1, CUI Yuguo1, WEI Yanding2. Dynamic hysteresis modeling and feedforward compensation of MFC actuatedresonant underwater flexible structures[J]. Journal of Vibration and Shock, 2023, 42(1): 115-122

参考文献

[1] 喻俊志, 杜晟, 吴正兴. 高机动水下仿生航行器研究现状[J]. 舰船科学技术, 2020 ,42(23): 8-12+100.
YU Jun-zhi, DU Sheng, WU Zheng-xing. Research status of highly maneuverable bionic underwater vehicles[J]. Ship Science and Technology, 2020, 42(23): 8-12+100.
[2] CHEN Song, LIU Yu-biao, CHEN Te-huan, et al. Rhythm motion control in bio-inspired fishtail based on central pattern generator[J]. IET Cyber-Systems and Robotics, 2021, 3(1): 53-67.
[3] 陈子雄, 季宏丽, 聂瑞, 裘进浩. 基于柔顺机构的风力机叶片变弯度前缘结构设计[J]. 科学技术与工程, 2020, 20(22): 9003-9010.
CHEN Zi-xiong, JI Hong-li, NIE Rui, et al. Structure design of the variable-camber leading edge of wind turbine blade based on compliant mechanisms[J]. Science Technology and Engineering, 2020, 20( 22): 9003-9010.
[4] 闫洪波, 高鸿, 郝宏波. 超磁致伸缩驱动器磁滞非线性动力学研究[J]. 机械工程学报, 2020, 56(15): 207-217.
YAN Hong-bo, GAO Hong, HAO Hong-bo. Research on Hysteresis Nonlinear Dynamics of Giant Magnetostrictive Actuator[J]. Journal of Mechanical Engineering. 2020, 56(15): 207-217.
[5] S Mohith, Adithya R Upadhya, Karanth Navin P, et al. Recent trends in piezoelectric actuators for precision motion and their applications: a review[J]. Smart Materials and Structures, 2021, 30(1): 013002
[6] 邱志成, 李城. 双连杆柔性机械臂振动主动控制与实验 [J]. 振动、测试与诊断, 2019, 39(03): 503-511+668.
QIU Zhi-cheng, LI Cheng. Experimental Study on Two-Link Rigid-Flexible Manipulator Vibration Control[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(03): 503-511+668.
[7] Cen L and Erturk A. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation[J]. Bioinspiration & Biomimetic, 2013, 8(1): 016006.
[8] 林煌旭, 任枭荣, 娄军强, 贾振. 宏压电纤维致动的水下推进器性能及机理[J]. 振动、测试与诊断, 2020, 40(05): 881-887+1020-1021.
LIN Huang-xu, REN Xiao-rong, LOU Jun-qiang, et al. Oscillation Performance and Propulsion Mechanisms of Biomimetic Underwater Propeller Actuated by Macro Fiber Composites (MFC)[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(05): 881-887+1020-1021.
[9] Tan David, Wang Yu-Cheng, Kohtanen Eetu, Erturk Alper. Trout-like multifunctional piezoelectric robotic fish and energy harvester[J]. Bioinspiration & Biomimetics, 2021, 16(4): 046024.
[10] 方楚, 郭劲, 徐新行, 姜振华, 王挺峰. 压电陶瓷迟滞非线性前馈补偿器[J]. 光学精密工程, 2016, 24(09): 2217-2223.
FANG Chu, GUO Jin, XU Xin-xing, et al. Compensating controller for hysteresis nonlinearity of piezoelectric ceramics[J]. Optics and Precision Engineering, 2016, 24(09): 2217-2223.
[11] Wang Wen, Wang Rui-jin, Chen Zhan-feng, et al. A new hysteresis modeling and optimization for piezoelectric actuators based on asymmetric Prandtl-Ishlinskii model[J]. Sensors and Actuators A: Physical, 2020, 316: 112431.
[12] Kuhnen K. Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl-Ishlinskii Approach[J]. European Journal of Control, 2003, 9(4): 407-418.
[13] Janaideh M A, Rakotondrabe M, Al-Darabsah I, et al. Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator[J]. Control Engineering Practice, 2018, 72(MAR.): 29-41.
[14] JIAN Y, D Huang, Liu J, et al. High-Precision Tracking of Piezoelectric Actuator Using Iterative Learning Control and Direct Inverse Compensation of Hysteresis[J], IEEE Transactions on Industrial Electronics, 2019, 66 (01): 368-377.
[15] 朱吟龙, 谭大鹏, 李霖, 等. 含裂纹损伤充液圆柱壳的振动响应求解方法[J]. 固体力学学报, 2019, 40(01): 51-73.
Zhu Yin-long, Tan Da-peng, Li Lin, et al. A Method for Analyzing the Vibration Responses of Thin Liquid-filled Cylindrical Shells with Crack Damage[J]. Chinese Journal of Solid Mechanics, 2019, 40(01): 51-73.
[16] Pascal Ziegler, Lorin Kazaz, Peter Eberhard. Achieving high-precision transient local contact behavior without introducing unphysical dynamics[J]. Mechanism and Machine Theory, 2020, 148: 103785.

PDF(2434 KB)

202

Accesses

0

Citation

Detail

段落导航
相关文章

/