深埋矿体采场爆破对矿柱的损伤特性研究

张翔宇1,2,严鹏1,2,卢文波1,2,张立新3,宋亮3,陈明1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 123-131.

PDF(20312 KB)
PDF(20312 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 123-131.
论文

深埋矿体采场爆破对矿柱的损伤特性研究

  • 张翔宇1,2,严鹏1,2,卢文波1,2,张立新3,宋亮3,陈明1,2
作者信息 +

Damage characteristics of ore pillars induced by deep buried orebodystope blasting

  • ZHANG Xiangyu1,2, YAN Peng1,2, LU Wenbo1,2, ZHANG Lixin3, SONG Liang3, CHEN Ming1,2
Author information +
文章历史 +

摘要

千米级矿产资源在采用房柱法开采过程中,由于深部岩体“三高”赋存环境及爆破开采的“强扰动”性,导致深部矿体开采面临难以预测灾害事故,因此高应力岩体采场爆破对矿柱的损伤机理与效应研究对深部采场作业安全具有重要意义。以陈台沟铁矿深部采场爆破开挖为背景,建立采场扇形孔爆破的三维数值模型,研究不同地应力水平下采场爆破对矿柱的损伤特性,同时从理论角度借助数值模拟阐述并验证了地应力与爆破荷载相互作用的机理。结果表明:在炮孔近区(5倍炮孔半径内),围岩主要受压剪作用,在炮孔中远区(10~25倍炮孔半径),围岩受环向拉应力作用明显;炮孔近区的压剪应力峰值主要由爆炸荷载的贡献,受地应力影响较小,中远区的环向拉应力峰值受地应力的影响较大,且随地应力的增大而减小;在地应力水平较小时,矿柱不同区域的损伤深度在不同地应力水平下具有不同衰减趋势,在地应力水平较大(大于20~30MPa)时,矿柱不同区域损伤深度的衰减趋至相同程度;地应力使矿柱损伤深度减小的原因在于地应力的存在减小了矿柱内的拉应力,同时通过对拉应力影响范围的估计,给出了不同埋深采场爆破时安全距离的建议值。

Abstract

In the kilometer-level mining process of mineral resources using the room-pillar method, the deep mining is faced with unpredictable disasters due to the "three high" of the deep rock mass and the "strong disturbance" of the blasting mining, the blasting damage research on the damage mechanism and effects of pillars under high in-situ stress is of great significance to the safety of stope operations. Based on the deep blasting excavation of Chentaigou Iron Mine, a three-dimensional numerical model of fan-pattern blasting holes in the stope was established to study the damage characteristics of the pillars caused by stope blasting under different in-situ stress. At the same time, the mechanism of the interaction between in-situ stress and blasting load was revealed from theoretical analysis and numerical simulation. The results show that in the near area of the blast hole (5 times the blast hole radius), the surrounding rock is mainly subjected to compression and shear stress, in the middle and far area of the blast hole (10 to 25 times the blast hole radius), the surrounding rock is significantly affected by the hoop tensile stress; the peak compressive and shear stress in the vicinity of the hole is mainly contributed by the explosive load and is less affected by the in-situ stress. The peak hoop tensile stress in the middle and far region is greatly affected by the in-situ stress, and the peak hoop tensile stress decreases with the increasing in-situ stress, the damage depth at different heights of pillars has different attenuation trends under different in-situ stress. When the in-situ stress is greater than 20~30MPa, the attenuation of the damage depth in different areas of pillars tends to the same degree, the existence of in-situ stress reduces the damage depth by suppressing the tensile stress in the pillar area. Through the estimation of the influence range of the tensile stress, the recommended value of the safety distance during blasting at different buried depths is given.

关键词

扇形孔 / 地应力 / 爆破损伤 / 矿柱 / 安全距离

Key words

fan-pattern boreholes / in-situ stress / blasting damage / pillars / safety distance

引用本文

导出引用
张翔宇1,2,严鹏1,2,卢文波1,2,张立新3,宋亮3,陈明1,2. 深埋矿体采场爆破对矿柱的损伤特性研究[J]. 振动与冲击, 2023, 42(1): 123-131
ZHANG Xiangyu1,2, YAN Peng1,2, LU Wenbo1,2, ZHANG Lixin3, SONG Liang3, CHEN Ming1,2. Damage characteristics of ore pillars induced by deep buried orebodystope blasting[J]. Journal of Vibration and Shock, 2023, 42(1): 123-131

参考文献

[1] 谢和平.“深部岩体力学与开采理论”研究构想与预期成果展望[J]. 工程科学与技术. 2017, 49(02): 1-16.
XIE Heping. Research Framework and Anticipated Results of Deep Rock Mechanics and Mining Theory [J]. Engineering Science Edition. 2017, 49(02): 1-16.
[2] Esterhuizen, G S, Iannacchione, A T, Ellenberger, J L. Pillar Stability Issues Based On A Survey Of Pillar Performance In Underground Limestone Mines[J]. 2006. [Z].
[3] 杨建华,吴泽南,姚池,等. 地应力对岩石爆破开裂及爆炸地震波的影响研究[J]. 振动与冲击. 2020, 39(13): 64-70.
YANG Jianhua, WU Zenan, YAO Chi et al. Influences of in-situ stress on blast-induced rock fracture and seismic waves[J]. Journal of Vibration and Shock. 2020, 39(13): 64-70.
[4] Kaiser P K, Cai M. Design of rock support system under rockburst condition[J]. Journal of Rock Mechanics and Geotechnical Engineering. 2012, 4(3): 215-227.
[5] Zhou Z, Zhao Y, Cao W, et al. Dynamic Response of Pillar Workings Induced by Sudden Pillar Recovery[J]. Rock Mechanics and Rock Engineering. 2018, 51(10): 3075-3090.
[6] Huang Z, Dai X, Dong L. Buckling failures of reserved thin pillars under the combined action of in-plane and lateral hydrostatic compressive forces[J]. Computers and Geotechnics. 2017, 87: 128-138.
[7]  严鹏, 单治钢, 陈祥荣,等. 深部岩体爆破损伤及控制研究[C]// 第三届全国岩土与工程学术大会论文集. 2009:508-512. (YAN Peng, SHAN Zhigang, CHEN Xiangrong, et al. Research on the damage zone and its control of deep tunnel[C] // Proceedings of 3rd GeoEngChina. 2009:508-512.
[8] 谢学斌,李德玄,孔令燕. 基于弹性薄板理论的矿壁稳定性分析模型及应用[J]. 采矿与安全工程学报. 2020, 37(04): 698-706.
XIE Xuebin, LI Dexuan, KONG Lingyan. Stability analysis model of ore wall based on elastic thin plate theory and its application[J]. Journal of Mining and Safety Engineering. 2020, 37(04): 698-706.
[9] 宋卫东,曹帅,付建新,等. 矿柱稳定性影响因素敏感性分析及其应用研究[J]. 岩土力学. 2014, 35(S1): 271-277.
SONG Wei-dong, CAO Shuai, FU Jian-xin, et al. Sensitivity analysis of impact factors of pillar stability and its application. Rock and Soil Mechanics. 2014, 35(S1): 271-277.
[10] 徐文彬,宋卫东,谭玉叶,等. 金属矿山阶段嗣后充填采场空区破坏机理[J]. 煤炭学报. 2012, 37(S1): 53-58.
XU Wen-bin, SONG Wei-dong,TAN Yu-ye, et al. Failure mechanism of stope and exploited areas with stage backfill method in metal mine[J]. JOURNAL OF CHINA COAL SOCIETY, 2012, 37(S1): 53-58.
[11] Jaiswal A, Shrivastva B K. Numerical simulation of coal pillar strength[J]. International Journal of Rock Mechanics and Mining Sciences. 2009, 46(4): 779-788.
[12] 郑永学. 矿山岩体力学[M]. 冶金工业出版社, 1988.
Zheng Yongxue. Mining rock mass mechanics [M] Metallurgical Industry Press,1988.
[13] 林斌,徐冬. 不同岩性岩石的单轴抗压强度与弹性模量关系[J]. 煤矿安全,2017,48(3):160-162,166. DOI:10.13347/j.cnki.mkaq.2017.03.043.
LIN Bin, XU Dong.Relationship between uniaxial compressive strength and elastic modulus of rocks based on different lithological[J]. Safety in Coal Mines,2017, 48(3):160-162.
[14] 胡英国, 卢文波, 陈明,等. 岩石爆破损伤模型的比选与改进[J]. 岩土力学, 2012(11):003278-3284.
HU Yingguo, LU Wenbo, CHEN Ming, et al. Comparison and improvement of blasting damage models for rock[J]. Rock and Soil Mechanics,2012, 33(11):3278-3284.
[15] Riedel, W & Thoma, Klaus & Hiermaier, Stefan & Schmolinske, E. (1999). Penetration of Reinforced Concrete by BETA-B-500 Numerical Analysis using a New Macroscopic Concrete Model for Hydrocodes. 9th International Symposium, Interaction of the Effects of Munitions with Structures.
[16] Yi C, Sjöberg J, Johansson D. Numerical modelling for blast-induced fragmentation in sublevel caving mines[J]. Tunnelling and Underground Space Technology. 2017, 68: 167-173.
[17] Borrvall T. The RHT concrete model in LS-DYNA[C]// 8th European LS-DYNA conference. 2011. [J].
[18] 李洪超,陈勇,刘殿书,等. 岩石RHT模型主要参数敏感性及确定方法研究[J]. 北京理工大学学报,2018,38(8):779-785. DOI:10.15918/j.tbit 1001-0645.2018.08.002.
LI Hongchao, CHEN Yong, LIU Dianshu, et al. Sensitivity analysis determination and optimization of rock RHT parameters[J].Transactions of Beijing Institute of Technology,2018, 38(8):779-785.
[19] Xie L X, Lu W B, Zhang Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J]. Tunnelling and Underground Space Technology. 2017, 66: 19-33.
[20] Livermore Software Technology Corporation. LS-DYNA theoretical manual[M]. California:Livermore Software Technology Corporation,2003:1012–1013.
[21] Hu H, Lu W, Yan P, et al. A new horizontal rock dam foundation blasting technique with a shock-reflection device arranged at the bottom of vertical borehole[J]. European Journal of Environmental and Civil Engineering, 2017:1-19.
[22] 戴俊. 岩石动力学特性与爆破理论[M]. 北京: 冶金工业出版社, 2002.
DAI Jun. dynamic behaviors and blasting theory of rock [M]. Beijing: China Metallurgical Industry Press, 2002.
[23] 陈士海, 王明洋, 赵跃堂, et al. 岩石爆破破坏界面上的应力时程研究[J]. 岩石力学与工程学报, 2003, 22(11).
Chen Shihai,Wang Mingyang,Zhao Yuetang, et al. Time-stress history on interface between cracked and uncracked zones under rock blasting[J], Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11).
[24] Lu W, Yang J, Ming C, et al. An equivalent method for blasting vibration simulation[J]. Simulation Modelling Practice and Theory, 2011, 19(9):2050-2062.
[25] 胡英国. 岩石高边坡爆破开挖损伤区的形成与演化机制[D]. 武汉: 武汉大学水利水电学院, 2015,18-20.
[26] 杨建华,卢文波,胡英国,等. 隧洞开挖重复爆炸荷载作用下围岩累积损伤特性[J]. 岩土力学. 2014, 35(02): 511-518.
YANG Jian-hua, LU Wen-bo, HU Ying-guo, et al. Accumulated damage in surrounding rocks due to repeated blasting loads during blasting excavation of tunnels[J]. Rock and Soil Mechanics, 2014, 35(02): 511-518.

PDF(20312 KB)

Accesses

Citation

Detail

段落导航
相关文章

/