近场旋转地震波对多跨高墩连续刚构桥地震易损性的影响

赵金钢1,贾宏宇2,占玉林2,3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 146-159.

PDF(4290 KB)
PDF(4290 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 146-159.
论文

近场旋转地震波对多跨高墩连续刚构桥地震易损性的影响

  • 赵金钢1,贾宏宇2,占玉林2,3
作者信息 +

Effects of near-field rotating seismic waves on seismic vulnerability of multi-span high-pier continuous rigid frame bridge

  • ZHAO Jingang1, JIA Hongyu2, ZHAN Yulin2,3
Author information +
文章历史 +

摘要

为研究近场旋转地震波对多跨高墩连续刚构桥易损性的影响,以某五跨高墩连续刚构桥工程实例为研究对象,首先基于改进云图法,从太平洋地震工程研究中心强震数据库中选取100条近场平动地震波,并采用频域法合成旋转地震波;然后,选取桥梁设计参数随机变量,采用拉丁超立方法抽取100个样本点并随机组合后,采用OpenSees建立100个全桥有限元模型,开展近场平动地震波和近场平动+旋转地震波作用下的动力非线性分析,获得高墩关键截面曲率响应最大值;最后以截面曲率临界值为损伤指标,研究适用于近场平动+旋转地震波作用下易损性分析的地震强度指标,并开展地震易损性分析。研究结果表明:地震动强度指标PGD和Sdmax最适用于近场平动+旋转地震波作用下多跨高墩连续刚构桥易损性分析;近场旋转地震波显著增大了多跨高墩连续刚构桥的损伤概率,忽略旋转地震波的影响将严重低估多跨高墩连续刚构桥的损伤概率,并且采用截面曲率作为损伤指标无法较好地反映扭转分量地震波引起的损伤。本项目研究成果对更为全面了解多跨高墩连续刚构桥桥梁的抗震性能、完善桥梁抗震设计及加固理论具有重要意义。
关键词:多跨高墩连续刚构桥;旋转地震波;地震易损性分析;改进云图法

Abstract

In order to study the influence of near-fault rotational seismic waves on the fragility of multi-span high-pier continuous rigid frame bridge, a five-span high-pier continuous rigid frame bridge is taken as the research object. Firstly, based on the improved cloud chart method, 100 near-field translational seismic waves are selected from Pacific Earthquake Engineering Research Center ground motion database, and the rotational seismic waves are synthesized using the frequency domain method. And then, the random variables of bridge design parameters are selected, 100 sample points are extracted by the Latin hypercube method and randomly combined, and the OpenSees is used to establish 100 whole bridge finite element models to carry out dynamic nonlinear analysis under the action of near-field translational seismic waves and near-field translational + rotational seismic waves for obtaining the maximum curvature values of the key sections of high-piers. Finally, taking the critical values of the section curvature as the damage index, the seismic intensity index which suitable for fragility analysis under near-field translational + rotational seismic waves is studied, and the seismic fragility analysis is performed. The results show that the seismic intensity indexes PGD and Sdmax are most suitable for the fragility analysis of the multi-span high-pier continuous rigid frame bridge under the action of near-field translational + rotational seismic waves. The near-field rotational seismic waves significantly increase the damage probability of multi-span high-pier continuous rigid frame bridges. Therefore, ignoring the effects of rotational seismic wave would seriously underestimate the damage probability of multi-span high-pier continuous rigid frame bridges, and using the sectional curvature as the damage index can not well reflect the damage caused by the torsional component seismic waves. The research results of this paper are of great significance for a more comprehensive understanding of the seismic performance of multi-span high-pier continuous rigid frame bridge and improving the bridge seismic design and reinforcement theory.
Key words: multi-span high-pier continuous rigid frame bridge; rotational seismic wave; seismic fragility analysis; improved cloud chart method

关键词

多跨高墩连续刚构桥 / 旋转地震波 / 地震易损性分析 / 改进云图法

Key words

multi-span high-pier continuous rigid frame bridge / rotational seismic wave / seismic fragility analysis / improved cloud chart method

引用本文

导出引用
赵金钢1,贾宏宇2,占玉林2,3. 近场旋转地震波对多跨高墩连续刚构桥地震易损性的影响[J]. 振动与冲击, 2023, 42(1): 146-159
ZHAO Jingang1, JIA Hongyu2, ZHAN Yulin2,3. Effects of near-field rotating seismic waves on seismic vulnerability of multi-span high-pier continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2023, 42(1): 146-159

参考文献

[1] Newmark NM. Torsion in symmetrical building[C]. Proceeding of the 4th World Conference on Earthquake Engineering. Chile: Santiago. 1969,(II):19-32.
[2] Werner SD, Lee LC, Wong HL, Trifunac MD. Structural response to traveling seismic waves[J]. Journal of Structural Division. 1979,105(12):2547-2564.
[3] Abdel-Ghaffar AM, Rubin LI. Torsional earthquake response of suspension bridge[J]. Journal of Engineering Mechanics. 1984,110(10):1467-1484.
[4] Falamarz-Sheikhabadi MR, Zerva A, Ghafory-Ashtiany M. Mean absolute input energy for in-plane vibrations of multiple-support structures subjected to non-stationary horizontal and rocking components[J]. Probabilistic Engineering Mechanics. 2016,45:87-101.
[5] Özşahin E, Pekcan G. Effect of torsional ground motion on the seismic response of highway bridges[J]. Bulletin of Earthquake Engineering. 2019,17:2603-2625.
[6] Özşahin E, Pekcan G. Inelastic seismic response of box-girder bridges due to torsional ground motions[J]. Engineering Structures. 2020,218:110831.
[7] 朱青龙.地震动转动分量对大跨桥梁结构地震反应的影响分析[D].江苏大学:硕士学位论文.2018.
Zhu Qinglong. Effect on rotational ground motions on seismic response analysis of long-span bridge structure[D]. Jiangsu University: Dissertation for Master Degree. 2018.
[8] 蓝先林.旋转地震动合成及其在非对称悬索桥抗震分析中的应用[D].西南交通大学:硕士学位论文.2020.
Lan Xianlin. Rotating ground motion synthesis and its application in aseismic analysis of asymmetric suspension bridge[D]. Southwest Jiaotong University: Dissertation for Master Degree. 2020.
[9] 王德斌,李新,孙治国,等.地震动扭转分量对大跨度斜拉桥易损性影响[J].工程科学与技术.2020,52(5):143-150.
Wang Debin, Li Xin, Sun Zhiguo, et al. Influence of rotational ground motion on seismic fragility of long-span bridges[J]. Advanced Engineering Sciences. 2020,52(5):143-150.
[10]赵金钢,贾宏宇,李晰,等.基于实际场地和碰撞双重效应的高墩大跨连续刚构桥易损伤分析[J].华南理工大学学报(自然科学版).2019,47(1):64-74.
Zhao Jingang, Jia Hongyu, Li Xi, et al. Fragility analysis of high-pier and long-span continuous rigid frame bridge based on double effects of the actual site and collision[J]. Journal of South China University of Technology (Natural Science Edition). 2019,47(1):64-74.
[11]赵金钢,胡靖,张永水,等.近场地震作用下钢筋混凝土高墩地震易损性分析[J].重庆交通大学学报(自然科学版).2019,38(10):25-32.
Zhao Jingang, Hu Jing, Zhang Yongshui, et al. Seismic fragility analysis of reinforced concrete high-pier under near-field seismic waves[J]. Journal of Chongqing Jiaotong University (Natural Science). 2019,38(10):25-32.
[12] Cornell CA, Jalayer F, Hamburger RO, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines[J]. Journal of Structural Engineering. 2002,128(4):526-533.
[13] Mackie K, Stojadinovic B. Probabilistic seismic demand model for California highway bridges[J]. Journal of Bridge Engineering. 2001,6(6):468-481.
[14]吕大刚,于晓辉,潘峰,王光远.基于改进云图法的结构概率地震需求分析[J].世界地震工程.2010,26(1):7-15.
Lv Dagang, Yu Xiaohui, Pan Feng, Wang Guangyuan. Probabilistic seismic demand analysis of structures based on an improved cloud method[J]. World Earthquake Engineering. 2010,26(1):7-15.
[15]日本道路协会.道桥示方书•同解说•Ⅴ耐震设计篇[S].2012.
Japan road association. Design specification of highway bridges part Ⅴ seismic design[S]. 2012.
[16]焦驰宇,鲁子明,龙佩恒,等.考虑土-桥台-上部结构相互作用的曲线桥抗震性能研究[J].振动与冲击.2018,37(8):99-106.
Jiao Chiyu, Lu Ziming, Long Peiheng, et al. Study on seismic behavior of curved bridge considering soil-abutment-superstructure interaction[J]. Journal of Vibration and Shock. 2018,37(8):99-106.
[17] Aviram A, Mackie KR, Stojadinović B. Guidelines for nonlinear analysis of bridge structures in California[R]. Berkeley: University of California. 2008.
[18] Zhang J, Makris N. Kinematic response functions and dynamic stiffnesses of bridge embankments[J]. Earthquake Engineering and Structural Dynamics. 2002,31(11):1933-1966.
[19]中华人民共和国交通部.公路桥梁盆式橡胶支座(JT 391-1999)[S].北京:人民交通出版社股份有限公司.1999.
Ministry of Transport of the People's Republic of China. Pot-type elastomeric pad bearing for highway bridge(JT391-1999)[S]. Beijing: China Communications Press Co., Ltd. 1999.
[20] California Department of Transportation. Seismic design criteria (version 1.6)[S]. USA: Sacramento, CA. 2010.
[21] Maroney BH, Chai YH. Bridge abutment stiffness and strength under earthquake loading[C]. Second International Workshop on the Seismic Design of Bridge. New Zealand: Queenstown. 1994.
[22] Baker JW. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America. 2007,97(5):1486-1501.
[23]李宏男,孙强,王宁伟.面波产生的地震动转动分量的试验验证[J].工程力学.2007,24(4):113-117.
Li Hongnan, Sun Qiang, Wang Ningwei. Experimental verification of rotational components of earthquake motions derived from surface waves[J]. Engineering Mechanics. 2007,24(4):113-117.
[24] 金星,廖振鹏.地震动相位特性的研究[J].地震工程与工程震动.1993,13(1):7-13.
Jin Xing, Liao Zhenpeng. Study on phase properties of strong ground motions[J]. Earthquake Engineering and Engineering Vibration. 1993,13(1):7-13.
[25]闫磊,李青宁,尹俊红,等.多维地震激励下人字形桥梁地震模拟振动台试验研究[J].振动与冲击.2016,35(7):167-176.
Yan Lei, Li Qingning, Yin Junhong, et al. Shaking table tests for Y-shaped bridges under multi-dimensional seismic excitation[J]. Journal of Vibration and Shock. 2016,35(7):167-176.
[26]钟剑,庞于涛,袁万城.斜拉桥易损性分析的合理地震动强度指标评估[J].同济大学学报(自然科学版).2016,44(9):1340-1346.
Zhong Jian, Pang Yutao, Yuan Wancheng. Evaluation of optimal intensity measures in fragility analysis of Cable-stayed bridges[J]. Journal of Tongji University (Natural Science). 2016,44(9):1340-1346.
[27]于晓辉.钢筋混凝土框架结构的概率地震易损性与风险分析[D].哈尔滨工业大学:博士学位论文.2012.
Yu Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures[D]. Harbin Institute of Technology: Dissertation for the Doctoral. 2012.

PDF(4290 KB)

334

Accesses

0

Citation

Detail

段落导航
相关文章

/