考虑反射波震荡的饱和土中大直径现浇混凝土管桩低应变测试解析解

邸同宇1,2,吴文兵1,2,张云鹏1,2,刘浩1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 160-168.

PDF(1415 KB)
PDF(1415 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 160-168.
论文

考虑反射波震荡的饱和土中大直径现浇混凝土管桩低应变测试解析解

  • 邸同宇1,2,吴文兵1,2,张云鹏1,2,刘浩1,2
作者信息 +

Analytical solution to low strain testing of large diameter cast-in-situ concrete pipe pile in saturated soil considering reflected wave oscillation

  • DI Tongyu1, 2,WU Wenbing1, 2, ZHANG Yunpeng1,2, LIU Hao1,2
Author information +
文章历史 +

摘要

相比传统实心桩,大直径现浇混凝土管桩在相同混凝土消耗的前提下拥有更高的承载能力和动力学刚度,但其低应变检测理论仍然滞后于工程应用。具体而言,饱和土体中的土塞效应和由于横向惯性效应导致的反射波震荡这两者对检测结果的影响仍然不清晰,亟需建立严格的桩周土-管桩-土塞模型来弥补这一空白。因此,本文采用Biot多孔介质连续方程模拟饱和土中水土两相介质间的相互作用,从能量法的角度考虑桩体的横向变形,修正了适用于管桩基础的Rayleigh-Love杆件模型,并将两者通过桩土界面关系进行耦合求解。通过傅里叶变换、势函数解耦偏微分方程以及分离变量法等数学手段求解了桩周土与桩芯土的径向和纵向位移函数,而后采用傅里叶逆变换得到半正弦脉冲下桩顶纵向振动速度时域响应解析解,并通过与前人的解进行对比,验证了本文解的正确性。本文的主要结论有:管桩泊松比越高,桩底反射信号幅值越小,反射波震荡效应越明显;管桩壁厚越大,桩底反射信号幅值越大;桩芯土模量越小,反射波的震荡效应越明显。

Abstract

Compared with the traditional solid pile, the large-diameter cast-in-place concrete pipe pile has larger bearing capacity and dynamic stiffness under the premise of the same concrete consumption, despite that its low strain detection theory still lags behind the engineering application. Specifically, the influence of the soil plug effect and the wave oscillation after the arrival of reflected signal are still vague. As a result of that, it is necessary to establish a rigorous surrounding soil-pipe pile-soil plug model for low strain integrity signal interpretation. In this paper, the Biot continuum equations are used to simulate the interaction between soil skeleton and pore fluid of the saturated soil. From the perspective of strain energy, the Rayleigh Love rod model is modified to suit for pipe piles. Through Fourier transform, decoupling partial differential equation by utilizing potential functions, and variable separation method, the radial and longitudinal displacement of the pile-soil system is solved. The time-domain response at the pile head under half sinusoidal pulse is obtained by Inverse Fourier Transformation. Through comparing with the previous solution, the validity of the solution is verified. The main conclusions of this paper are: with the increase of Poisson's ratio of the pipe pile, the amplitude of the reflected signal at the pile tip becomes smaller, and the oscillation of the wave is more obvious. The thicker the pipe pile wall is, the larger the reflected signal amplitudes are. The oscillation effect of reflected wave signal becomes smaller as the decrease of the pile-soil modulus ratio.

关键词

管桩 / 横波干扰 / 饱和土 / 低应变测试 / 纵向振动 / 时域响应

Key words

pipe pile / transverse wave effect / saturated soil / low strain test / longitudinal vibration / response in time domain

引用本文

导出引用
邸同宇1,2,吴文兵1,2,张云鹏1,2,刘浩1,2. 考虑反射波震荡的饱和土中大直径现浇混凝土管桩低应变测试解析解[J]. 振动与冲击, 2023, 42(1): 160-168
DI Tongyu1, 2,WU Wenbing1, 2, ZHANG Yunpeng1,2, LIU Hao1,2. Analytical solution to low strain testing of large diameter cast-in-situ concrete pipe pile in saturated soil considering reflected wave oscillation[J]. Journal of Vibration and Shock, 2023, 42(1): 160-168

参考文献

[1] Nogami T, Novak M. Soil-pile interaction in vertical                          vibration[J]. Earthquake Engineering and Structural Dynamics, 1976, 4(3):277-293.
[2] Novak M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4):574-598.
[3] Novak M, Aboul-Ella F, Nogami T. Dynamic soil reactions for plane strain case[J]. Journal of the Engineering Mechanics Division, 1978, 104(4): 953-959.
[4] Nogami T, Konagai K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics Division, ASCE, 1986, 112(11): 1241-1252.
[5] 龚志超, 杨冬英. 考虑横向惯性效应时饱和土中大直径桩的纵向振动研究[J]. 振动与冲击, 2018,37(2):6.
Gong Zhi-chao, Yang Dong-ying. Vertical vibration of a large diameter pile with transversal inertia effect in saturated soil[J]. Journal of Vibration and Shock, 2018,37(2): 6.
[6] 高柳, 王奎华, 李振亚, 等. 考虑桩周土竖向作用和施工扰动效应时大直径楔形桩的纵向振动特性[J]. 振动与冲击, 2018,37(2): 30-37,65.
GAO Liu, WANG Kuihua, LI Zhenya, et al. Vertical vibration characteristics of a large diameter tapered pile considering vertical action of surrounding soil and construction disturbance effect[J]. Journal of Vibration and Shock, 2018,37(2): 30-37,65.
[7] Wu W B, Wang K H, Zhang Z Q, et al. Soil-pile interaction in the pile vertical vibration considering true three-dimensional wave effect of soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37: 2860-2876.
[8] Zheng C J, Ding X M, Sun Y F. Vertical vibration of a pipe pile in viscoelastic soil considering the three dimensional wave effect of soil[J]. International Journal of Geomechanics, 2015, 16(1): 1-10.
[9] Biot MA. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962,33(4):1482-1498.
[10] 李强, 王奎华, 谢康和. 饱和土中端承桩纵向振动特性研究[J]. 力学学报, 2004, 36(4): 435-442.
Li Qiang, Wang Kui-hua, Xie Kang-he. Study on longitudinal vibration characteristics of end-bearing pile in saturated soil[J]. Chinese Journal of Theoretical and Applied Mechani, 2004, 36(4): 435-442.
[11] 刘鑫, 王奎华, 涂圆. 双向非均质土中填砂竹节管桩纵向振动理论与试验研究[J].振动与冲击, 2020,39(14): 11.
LIU Xin, WANG Kui-hua, TU Yuan. Theoretical and experimental study on the longitudinal vibration of sand-filled nodular pipe piles in bidirectional inhomogeneous soil[J]. Journal of Vibration and Shock, 2020,39(14): 11.
[12] 孟坤, 崔春义, 许成顺, 等. 三维饱和层状土–虚土桩–实体桩体系纵向振动频域分析[J]. 岩石力学与工程学报, 2019b, 38(7): 1470-1484.
MENG Kun,CUI Chun-yi,XU Cheng-shun, et al. Frequency analysis of longitudinal vibration of a three-dimensional system of saturated layered soils, virtual soil piles and solid piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2019b, 38(7): 1470-1484.
[13] 黎正根,龚育龄.波在大直径桩中传播的三维效应现象[J].岩石力学与工程学报,1998(04): 86-91.
LI Zheng-gen, GONG Yu-ling. Biscussion on three mensional effect of wave propagating in the pile with large diameter[J]. Chinese Journal of Rock Mechanics and Engineering, 1998(04): 86-91.
[14] Chow Y K, Phoon K K, Chow W F, et al. Low strain integrity testing of piles: Three-dimensional effects. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(11): 1057-1062.
[15] 丁选明, 刘汉龙. 低应变下变阻抗薄壁管桩动力响应频域解析解[J]. 岩土力学, 2009(6): 1793-1798.
DING Xuan-ming, LIU Han-long. Analytical solution in frequency domain of dynamic response of thin-wall pipe piles with variable wave impedance under low strain transient concentrated load[J]. Rock and Soil Mechanics, 2009(6): 1793-1798.
[16] 丁选明, 陈育民, 孔纲强. PCC桩低应变反射波法检测时速度波形成机制探讨[J]. 岩土力学, 2012, 33(1): 154-161.
DING Xuan-ming, CHEN Yu-min, KONG Gang-qiang. Formation mechanism of velocity waves in low strain integrity testing of PCC pile[J]. Rock and Soil Mechanics, 2012, 33(1): 154-161.
[17] 刘浩, 吴文兵, 蒋国盛, 等. 土塞效应对管桩低应变测试视波速的影响研究[J]. 岩土工程学报, 2019, 41(2): 383-389.
LIU Hao, WU Wen-bing, JIANG Guo-sheng, et al. Influences of soil plug effect on apparent wave velocity of pipe piles during low-strain integrity[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 383-389.
[18] 孟坤, 崔春义, 许成顺, 等. 考虑径向波动效应的黏弹性支承桩纵向振动阻抗研究[J]. 振动工程学报, 2019, 032(002):296-304.
MENG Kun, CUI Chun-yi, XU Cheng-shun, et al. Vertical dynamic impedance of floating pile considering the radial wave effect[J]. Journal of Vibration Engineering, 2019, 032(002):296-304.
[19] Liu X, El Naggar M H, Wang K H, et al. Theoretical analysis of three dimensional effect in pile integrity test[J]. Computers and Geotechnics, 2020, 127: 103765.
[20] Liu X, El Naggar M H, Wang K H, et al. Three-dimensional axisymmetric analysis of pile vertical vibration[J]. Journal of Sound and Vibration, 2021, 494: 115881.
[21] Zhang Y P, Liu H, Wu W B, et al. A 3D analytical model for distributed low strain test and parallel seismic test of pipe piles[J]. Ocean Engineering, 2021, 225:108828.
[22] 张敬一, 陈龙珠, 马晔, 等. 在役基桩检测方法的数值模拟研究[J]. 振动与冲击, 2013, 32(21):5.
ZHANG Jing-yi,CHEN Long-zhu,MA Ye, et al. Numerical simulation for testing method of existing piles[J]. Journal of Vibration and Shock, 2013, 32(21):5.
[23] 张敬一, 陈龙珠. 基于小波变换的反射波法基桩检测[J]. 振动与冲击, 2014, 33(6): 179-183.
ZHANG Jing-yi, CHEN Long-zhu. Sonic echo test for pile integrity testing based on wavelet transform[J]. Journal of Vibration and Shock, 2014, 33(6): 179-183.
[24] Li Z Y, Wang K H, Wu W B, et al. Vertical vibration of a large diameter pile embedded in inhomogeneous soil based on the Rayleigh-Love rod theory[J]. Journal of Zhejiang University-SCIENCE A, 2016, 17(12):974-988.
[25] 吴文兵, 邓国栋, 张家生, 等. 考虑横向惯性效应时桩侧土-管桩-土塞纵向耦合振动特性研究[J].岩土力学,2017,38(04):993-1002.
WU Wen-bing, DENG Guo-dong, ZHANG Jia-sheng, et al. Vertical dynamical response of soil surrounding pile-pile pile-soil plug by considering lateral inertial effect[J]. Rock and Soil Mechanics, 2017,38(04): 993-1002.
[26] 刘汉龙. 振动沉模大直径现浇混凝土薄壁管桩技术及其应用[J]. 矿产勘查, 2002, 5(012):20-21.
LIU Hang-long. Field pour concrete thin wall cased pile technology and its application[J]. Mineral exploration, 2002, 5(012):20-21.
[27] 李剑强, 周建. 开口桩中土芯形成、影响因素及判别方法研究[J]. 岩土力学,2008(02): 449-454.
LI Jian-qiang, ZHOU jian. Effects on soil plugging and plugged mode in open-ended pile[J]. Rock and Soil Mechanics, 2008(02): 449-454.
[28] 郑长杰,丁选明,安淑红. 横观各向同性地基中管桩扭转振动响应解析解[J].岩土力学,2016,37(09):2477-2483+2488.
ZHENG Chang-jie, DING Xuan-ming, AN Shu-hong. Analytical solution for torsional dynamic response of a pipe pile in transversely isotropic soil[J]. Rock and Soil Mechanics, 2016, 2016,37(09):2477-2483+2488.
[29] 吴文兵, 蒋国盛, 王奎华, 等. 土塞效应对管桩纵向动力特性的影响研究[J].岩土工程学报,2014, 36(6):1129-1141.
WU Wen-bing, JIANG Guo-sheng, WANG Kui-hua, et al. Influence of soil plug effect on vertical dynamic response of pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6):1129-1141.
[30] 刘林超, 闫启方, 王颂, 等. 基于轴对称模型的管桩竖向振动研究[J].岩土力学,2016,37(01):119-125. 
 LIU Lin-chao, YAN Qi-fang, WANG Song, et al. Vertical vibration of pipe pile based on axisymmetric model[J]. Rock and Soil Mechanics, 2016,37(01):119-125.

PDF(1415 KB)

184

Accesses

0

Citation

Detail

段落导航
相关文章

/