单螺栓连接梁的非线性连接层建模与参数识别

刘鹏韬,关天赐,王小鹏

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 190-197.

PDF(1827 KB)
PDF(1827 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 190-197.
论文

单螺栓连接梁的非线性连接层建模与参数识别

  • 刘鹏韬,关天赐,王小鹏
作者信息 +

Nonlinear connection layer modeling and parametric identification for single bolt connected beam

  • LIU Pengtao, GUAN Tianci, WANG Xiaopeng
Author information +
文章历史 +

摘要

针对线性的螺栓连接层等效模型无法表征进入微观滑移状态后结合部动力学行为的问题,用Voce本构关系对线性连接层等效模型做出了改进,使其能表征螺栓结合部的非线性动力学行为。以单螺栓连接梁为研究对象,实验探究了不同预紧扭矩对其固有频率的影响,测试了其在不同幅值谐波激励力下的频响函数。通过遗传算法对连接层等效模型的四个非线性参数进行了识别,分别包括初始屈服应力、切线模量和两个形状参数,识别了参数后模型频响函数计算值与实验值的误差在10%以内,表明改进后模型的准确性与可行性。改进后连接层等效模型可以用于装配结构非线性行为的预测。
    关键词:螺栓连接;参数识别;非线性;连接层模型

Abstract

Aiming at the problem that the linear equivalent model of bolted joint layer can not characterize the dynamic behavior of the joint after entering the micro slip state, the linear equivalent model of bolted joint layer is improved by using Voce constitutive relationship to characterize the nonlinear dynamic behavior of bolted joint. Taking the single bolt connection beam as the research object, the influence of different pre tightening torques on its natural frequency was investigated experimentally, and the frequency response function under different amplitude harmonic excitation force was tested. The four nonlinear parameters of the equivalent model of the connection layer were identified by genetic algorithm,including initial yield stress, tangent modulus and two shape parameters. After identifying the parameters, the error between the calculated value of the model frequency response function and the experimental value is less than 10%, which shows the accuracy and feasibility of the improved model. The improved equivalent model of connecting layer can be used to predict the nonlinear behavior of assembly structure.
Key words: bolted joint; parameter identification; nonlinear; connective layer model

关键词

螺栓连接 / 参数识别 / 非线性 / 连接层模型

Key words

bolted joint / parameter identification / nonlinear / connective layer model

引用本文

导出引用
刘鹏韬,关天赐,王小鹏. 单螺栓连接梁的非线性连接层建模与参数识别[J]. 振动与冲击, 2023, 42(1): 190-197
LIU Pengtao, GUAN Tianci, WANG Xiaopeng. Nonlinear connection layer modeling and parametric identification for single bolt connected beam[J]. Journal of Vibration and Shock, 2023, 42(1): 190-197

参考文献

[1] Gaul L, Lenz J. Nonlinear dynamics of structures assembled by bolted joints[J]. Acta Mechanica, 1997,125(1):
169-181.
[2] 张相盟, 王本利, 卫洪涛. Iwan模型非线性恢复力及能量耗散计算研究[J].工程力学, 2012,29(11):33-39.
ZHANG Xiangmeng, WANG Benli, WEI Hongtao. Calcula-tion of nonlinear restoring force and energy dissipation in Iwan model[J]. Engineering Mechanics, 2012,29(11):33-39.
[3] Brake M R W. A reduced Iwan model that includes pinning for bolted joint mechanics[J]. Nonlinear Dynamics, 2017,87
(2):1335-1349.
[4] Mignolet M P, Song P, Wang X Q. A stochastic Iwan-type model for joint behavior variability modeling[J]. Journal of Sound and Vibration, 2015,349:289-298.
[5] Segalman D J. A Four-Parameter Iwan Model For Lap-
Type Joint[J]. Journal of Applied Mechanics, 2002,72(5):
752-760.
[6] Li Y, Hao Z. A six-parameter Iwan model and its applica-tion[J]. Mechanical Systems and Signal Processing, 2015, 68(FEB.):354-365.
[7] 李一堃, 郝志明, 章定国. 基于六参数非均匀密度函数的伊万模型研究[J].力学学报, 2015,47(03):513-520.
LI Yikun, HAO Zhiming, ZHANG Dingguo. Investigation into Iwan model based on six-parameter non-uniform density function[J].Chinese Journal of theoretical and Applied Mechanics, 2015,47(03):513-520.
[8] 李一堃, 郝志明. 连接结构宏观滑移能量耗散特性研究[J].机械工程学报, 2018,54(15):125-131.
LI Yikun, HAO Zhiming. Investigation on the energy dissi-pation properties of jointed structure during macro-slip stage
[J]. Journal of Mechanical Engineering, 2018,54
(15):125-131.
[9] 王东, 范宣华. 连接界面迟滞非线性特征的动力学分析[J].振动工程学报, 2019,32(06):1060-1066.
WANG Dong, FAN Xuanhua. Dynamic analysis of hysteretic nonlinearity of interface[J]. Journal of Vibration Engineering, 2019,32(06):1060-1066.
[10] 曹军义, 刘清华, 洪军. 螺栓连接微观摩擦到宏观动力学研究综述[J].中国机械工程,2021,32(11):1261-1273.
CAO Junyi, LIU Qinghua, HONG Jun. Overview of micro friction to macro dynamics of bolted connections[J]. CHINA MECHANICAL ENGINEERING, 2021,32(11):1261-1273.
[11] Iranzad M, Ahmadian H. Identification of nonlinear bolted lap joint models[J]. Computers and Structures, 2012,
96-97(Apr.):1-8.
[12] Chu Y, Wen H, Chen T. Nonlinear modeling and identification of an aluminum honeycomb panel with multiple bolts[J]. Shock and Vibration, 2016, 2016:1-8.
[13] Alamdari M M, Li J, Samali B, et al. Nonlinear Joint Model Updating in Assembled Structures[J]. Journal of Engineering Mechanics, 2013,140(7):04014042-1-04014042-11.
[14] Zhan M, Guo Q, Yue L, et al. Modeling and Stochastic Model Updating of Bolt-Jointed Structure[J]. Shock and Vibration, 2018,2018(PT.11):1-12.
[15] Shokrollahi S, Adel F. Finite element model updating of bolted lap joints implementing identification of joint affected region parameters[J]. Journal of Theoretical and Applied Vi-bration and Acoustics, 2016,2(1):65-78.
[16] Adel F, Shokrollahi S, Jamal-Omidi M, et al. A model up-dating method for hybrid composite/aluminum bolted joints using modal test data[J]. Journal of Sound and Vibration,2017, 396:172-185.
[17] Yang D, Lu Z R, Wang L. Parameter identification of bolted joint models by trust-region constrained sensitivity ap-proach[J]. Applied Mathematical Modelling, 2021, 99: 204-227.
[18] Zhang Y, Zhao Y, Lu Y, et al. Bayesian identification of bolted-joint parameters using measured power spectral den-sity[J]. Proceedings of the Institution of Mechanical Engi-neers, Part O: Journal of Risk and Reliability, 2020, 234(2): 260-274.
[19] 郭宁, 黄庆, 曹善成, 等. 基于模型修正的螺栓连接板结构动力学建模方法[J]. 工程力学, 2021, 38(6): 1-9.
GUO Ning, HUANG Qing, CAO Shancheng, et al.   Structural dynamic modeling method of bolted joint plates based model updating[J]. Engineering Mechanics, 2021, 38(6): 1-9.
[20] Yao X, Wang J, Zhai X. Research and application of im-proved thin-layer element method of aero-engine bolted joints[J]. Proceedings of the Institution of Mechanical Engi-neers, Part G: Journal of Aerospace Engineering, 2017, 231(5): 823-839.
[21] 范世荣, 张学良, 温淑花, 等. 基于各向同性虚拟材料的固定结合面修正模型[J]. 太原科技大学学报, 2017, 38(4): 302-306.
FAN Shirong,ZHANG Xueliang,WEN Shuhua,et al. The correction model of fixed joint surface based on isotropic virtual material[J]. Journal of Taiyuan University of Science and Technology, 2017, 38(4): 302-306.
[22] 李朝峰, 乔瑞环, 苗雪阳, 江雨霖. 螺栓连接界面非线性建模及其参数辨识方法研究[J].机械工程学报,2021,
57(07):78-86.
LI Chaofeng, QIAO Ruihuan, MIAO Xueyang, et al.    Investigation on nonlinear modeling and model parameters identification of the interface of bolted joints[J]. Journal of Mechanical Engineering,2021,57(7):78-86.
[23] Zhao K, Wang L, Chang Y, et al. Identification of post-
necking stress-strain curve for sheet metals by inverse method[J]. Mechanics of Materials. 2016,92:107-118.
[24] Yuan P P, Ren W X, Zhang J. Dynamic tests and model up-dating of nonlinear beam structures with bolted joints[J]. Mechanical Systems and Signal Processing,2019,126(JUL.1):
193-210.
[25] Roettgen D R, Allen M S. Nonlinear characterization of a bolted, industrial structure using a modal framework[J]. Mechanical Systems and Signal Processing, 2017, 84(pt.B):
152-170.
[26] Desai C S, Zaman M M, Lightner J G, et al. Thin-layer ele-ment for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1984,8:
19-43.
[27] Dekoninck C. Deformation properties of metallic contact surfaces of joints under the influence of dynamic tangential loads[J]. International Journal of Machine Tool Design & Research, 1972, 12(3):193-199.

PDF(1827 KB)

217

Accesses

0

Citation

Detail

段落导航
相关文章

/