基于维纳过程截齿磨损退化预测研究

张强1,2,张佳瑶1,吕馥言2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 207-214.

PDF(3419 KB)
PDF(3419 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 207-214.
论文

基于维纳过程截齿磨损退化预测研究

  • 张强1,2,张佳瑶1,吕馥言2
作者信息 +

Prediction of pick wear degradation states of road header based on Wiener process

  • ZHANG Qiang1,2, ZHANG Jiayao1, L Fuyan2
Author information +
文章历史 +

摘要

针对掘进机的截齿磨损状态问题,构建了基于灰色-马尔科夫链模型、Gamma过程预测模型以及维纳过程磨损状态预测模型。通过搭建试验台,提取振动及声发射数据样本,考虑实验环境对实验数据提取的影响,应用小波包分解方法,对数据进行降噪处理。定义6种截齿磨损程度状态,每种状态取50组数据样本,进行模型精度验证,均符合精度要求,进而应用模型进行数据预测研究,对比真是实验数据,结果表明:振动信号加速度能量和下灰色-马尔科夫模型相对误差为0.89%,Gamma模型相对误差为0.47%,维纳过程相对误差为0.39%;声发射信号加速度能量和下灰色-马尔科夫模型相对误差为1.02%,Gamma模型相对误差为0.84%,维纳过程相对误差为0.47%;三种模型预测精度都很好,其中维纳过程预测误差最小,为掘进机截齿磨损退化状态预测研究提供了新的方法。

Abstract

In order to solve the problem of picking gear wear state of road header, the wear state prediction model based on Grey-Markov chain model, Gamma process prediction model and Wiener process prediction model were constructed.The vibration and acoustic emission data samples were extracted by building a test bench. Considering the influence of experimental environment on the extraction of experimental data, the wavelet packet decomposition method was used to de-noise the data.Define 6 kinds of cutter tooth wear state, each state take 50 groups of data samples, verifies the accuracy of model, all conform to the requirements of the precision, data prediction research and application model, contrast is the experimental data, the results show that the vibration acceleration signal energy and the Grey-Markov model relative error is 0.89%, Gamma model relative error is 0.47%, wiener process relative error is 0.39%;The relative error of AE signal acceleration energy and lower Grey-Markov model is 1.02%, the relative error of Gamma model is 0.84%, and the relative error of Wiener process is 0.47%.The prediction accuracy of the three models are all good, and the prediction error of Wiener process is the least, which provides a new method for the prediction of the degradation state of road header pick wear.

关键词

截齿磨损 / 灰色-马尔科夫链 / Gamma过程 / 维纳过程 / 预测精度

Key words

Pick wear / Grey-Markov chain / Gamma process / Wiener process / Prediction accuracy

引用本文

导出引用
张强1,2,张佳瑶1,吕馥言2. 基于维纳过程截齿磨损退化预测研究[J]. 振动与冲击, 2023, 42(1): 207-214
ZHANG Qiang1,2, ZHANG Jiayao1, L Fuyan2. Prediction of pick wear degradation states of road header based on Wiener process[J]. Journal of Vibration and Shock, 2023, 42(1): 207-214

参考文献

[1]          王超,苗润时,毕瑞敏.矿山机械摩擦磨损问题与防范建议的研究解析[J].山东工业技术,2017(21):83.
 Wang Chao,Miao Runshi,Bi Ruimin.Research Analysis of Friction and Wear Problems and Prevention Suggestions of Mining Machinery [J]. Shandong Industrial Technology,2017(21):83.
[2]  田立勇,毛君,王启铭.基于采煤机摇臂惰轮轴受力分析的综合煤岩识别方法[J].煤炭学报,2016, 41(3):782-787.
 Tian Liyong,Mao Jun,Wang Qiming.Comprehensive coal and rock identification method based on force analysis of shearer rocker idler shaft [J]. Journal of China Coal Society,2016,41(3):782-787.
[3] 张强,刘志恒,王海舰,顾颉颖,田莹,仲丛华.基于多特征信息融合的截齿磨损程度识别研究[J].电子测量与仪器学报,2017,31(12):1974-1983.
 Zhang Qiang,Liu Zhiheng,Wang Haijian,Gu Jieying,Tian Ying,Zhong Conghua.Recognition of Pick Wear Degree Based on Multi-feature Information Fusion  [J]. Journal of Electronic Measurement and Instrument,2017,31(12):1974-1983.
[4] 宋成涛.掘进机截齿磨损程度识别方法研究[J].自动化应用,2020(10):27-29.
 Song Chengtao. Research on Recognition Method of Cutting Tooth Wear Degree of Roadheading Machine [J]. Automation Applications,2020(10):27-29.
[5] 金铃子,曹越操,亓玉浩,余铜柱,顾颉颖,张强.基于声发射与D-S证据理论的截齿磨损状态识别[J].煤炭科学技术,2020,48(05):120-128.
 Jin Jingzi,Cao Yuecao,Qi Yuhao,Yu Tongzhu,Gu Jieying,Zhang Qiang.Recognition of Pick Wear Condition Based on Acoustic Emission and D-S Evidence  Theory [J]. Coal Science and Technology,2020,48(05):120-128.
[6]   梁庆海,贾希胜,白雲杰.基于Gamma过程的制动器磨损退化建模与剩余寿命预测[J].公路与汽运,2021(05):1-5.
Liang Qinghai, Jia Xisheng, Baiyun Jie.  Modeling of Brake Wear Degradation and Residual Life Prediction Based on Gamma Process [J].  Highway and Automobile Transportation,2021(05):1-5.
[7]   毛奕喆,龚国芳,周星海,王飞.基于马尔可夫过程和深度神经网络的TBM围岩识别[J].浙江大学学报(工学版),2021,55(03):448-454+547.
  Mao Yizhe, GongGuofang,Zhou Xinghai, et al.       Identification of TBM surrounding rock based on Markov process and deep neural network[J].Journal of Zhejiang University (Engineering Science), 201,55(3):448-454. 
[8] 郝刚,金涛.基于隐马尔科夫模型的滚动轴承性能退评估[J].重庆交通大学学报(自然科学版),2021,40(02):123-128.
 Hao Gang,Jin Tao.Evaluation of Rolling Bearing Perfor-mance Decline Based on Hidden Markov Model [J]. Journal of Chongqing Jiaotong University (Natural Science Edition),2021,40(02):123-128. 
[9] 刘文溢,刘勤明,周林森.基于高阶隐半马尔科夫模型的设备剩余寿命预测[J].计算机集成制造系统,2016,22(9):2187-2194.
 LIU Wenyi,LIU Qinming,ZHOU Linsen. Equipment health diagnostics and prognostics method based on adaptive HSMM[J]. Computer  Integrated Manufacturing Systems,2016,22(9):2187-2194.
[10] 周咏辉,艾兴,赵军,薛强.基于灰色-马尔可夫理论的纳米复合陶瓷刀具磨损量预测[J].制造技术与机床,2010(04):51-54.
 Zhou Yonghui,Ai Xing,Zhao Jun,Xue Qiang.Wear Prediction of Nano-composite Ceramic Tool Based on Grey-Markov Theory [J]. Manufacturing Technology & Machine Tool,2010(04):51-54.
[11] Li Yuxiong,Huang Xianzhen,Ding Pengfei,Zhao Chengying. Wiener-based remaining useful life prediction of rolling bearings using improved Kalman filtering and adaptive modification[J]. Measurement,2021,182:
[12]  Li Shilin,Ran Yan,Zhang Genbao,Zhang Dingfei. Accuracy Degradation Model and Residual Accuracy Life Prediction of CNC Machine Tools Based on Wiener Process[J]. IOP Conference Series: Materials Science and Engineer-ing,2021,1043(3):
[13]  Xiao Meng,Zhang Youpeng,Li Yongjian,Wang Wenxian. Degradation Modeling Based on Wiener Process Considering Multi-Source Heterogeneity[J]. IEEE ACCESS,2020,8:
[14]  Liu Xi,Wang Rongqiao,Hu Dianyin,Zhang Long,Chen Gaoxiang. Degradation analysis on high-cycle bending fa-tigue for woven SiC/SiC composites based on Wiener pro-cess model[J]. Materials & De-sign,2021,198(prepublish):
[15] 赵洪利,张猛.基于随机维纳过程的航空发动机性能衰退研究[J].推进技术,2021,42(03):488-494.
 Zhao Hongli,Zhang Meng.Research on Aero Engine Per-formance Decline Based on Stochastic Wiener Process [J]. Journal of Propulsion Technology,2021,42(03):488-494.
[16] 郝芳,王宏超.改进循环维纳滤波器算法的滚动轴承复合故障诊断[J].中国工程机械学报,2018,16(04):371-376.
 Hao Fang, Wang Hongchao.Composite Fault Diagnosis of Rolling Bearings Based on Improved Cyclic Wiener Filter Algorithm [J]. Chinese Journal of Construction Machinery,2018,16(04):371-376.

PDF(3419 KB)

Accesses

Citation

Detail

段落导航
相关文章

/