基于惯容系统位置的调谐质量阻尼器的振动控制研究

刘欣鹏1,2,杨映雯1,2,孙毅1,2,晏致涛1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 215-223.

PDF(2130 KB)
PDF(2130 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 215-223.
论文

基于惯容系统位置的调谐质量阻尼器的振动控制研究

  • 刘欣鹏1,2,杨映雯1,2,孙毅1,2,晏致涛1,2
作者信息 +

Vibration control of TMD based on position of inertial system

  • LIU Xinpeng1,2, YANG Yingwen1,2, SUN Yi1,2, YAN Zhitao1,2
Author information +
文章历史 +

摘要

为研究惯容系统位置对调谐质量阻尼器(TMD)减振性能的影响,首先基于动力学原理,采用定点理论对惯质调谐质量阻尼器(TMDI)进行参数优化,得到最优频率比和最优阻尼比解析解;其次讨论了频率比及阻尼比对结构振动特性的影响;最后对TMDI鲁棒性进行研究。结果表明:惯容系统连接位置对阻尼器吸振能力影响显著,与传统TMD和非接地TMDI相比,接地TMDI使主结构动力放大系数分别减小约8.4%、16.5%;接地TMDI调频宽度相比传统TMD提高约6%;在阻尼摄动范围内,接地TMDI减振系统动力放大系数增幅约1.5倍;接地TMDI具有更良好的鲁棒性,可为设计新型TMDI模型提供理论参考。

Abstract

In order to study the influence of inertial system position on the vibration reduction performance of tuned mass damper (TMD), firstly, based on the dynamic principle, the parameters of SDOF structural system were optimized by using the fixed-point theory, and the analytical solutions of optimal frequency ratio and optimal damping ratio were obtained. Secondly, the influence of frequency ratio and damping ratio on structural vibration characteristics is discussed. Finally, the robustness of tuned mass damper inerter is studied. The results show that the connection position of inertial system has a significant effect on the vibration absorption capacity of TMD. Compared with the conventional TMD and unground TMDI, the dynamic magnification factor of grounded TMDI decreases about 8.4% and 16.5%, respectively. Compared with traditional TMD, the frequency modulation width of grounded TMDI is increased by about 6%. In the range of damping ratio perturbation, the dynamic amplification coefficient of grounded TMDI damping system increases by about 1.5 times. Grounded TMDI has better robustness, which can provide theoretical reference for the design of new TMDI model.
Key words: inerter; tuned mass damper inerter; fixed point theory

关键词

惯容系统 / 惯质调谐质量阻尼器 / 定点理论

Key words

inerter / tuned mass damper inerter / fixed point theory

引用本文

导出引用
刘欣鹏1,2,杨映雯1,2,孙毅1,2,晏致涛1,2. 基于惯容系统位置的调谐质量阻尼器的振动控制研究[J]. 振动与冲击, 2023, 42(1): 215-223
LIU Xinpeng1,2, YANG Yingwen1,2, SUN Yi1,2, YAN Zhitao1,2. Vibration control of TMD based on position of inertial system[J]. Journal of Vibration and Shock, 2023, 42(1): 215-223

参考文献

[1] Frahm H. Device for damping vibrations of bodies: US989958 A[P]. 1911.
[2] Ormondroyd J, Den Hartog J P. The theory of the dynamic vibration absorber[J]. Trans. ASME, 1928, 50: 9-22.
[3] Papageorgiou C, Smith M C. Laboratory experimental testing of inerters[C]//Spain: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 3351-3356.
[4] Wang F C, Chen C W, Liao M K, et al. Performance analyses of building suspension control with inerters[C]//USA : 2007 46th IEEE Conference on Decision and Control, 2007, 3786-3791.
[5] Wang, Fu-Cheng, Hong, et al. Building suspension control with inerters [J]. Proceedings of the Institution of Mechanical Engineers, 2010, 224(08): 1605-1616.
[6] Dario De Domenico, Giuseppe Ricciardi. Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(12):1-22.
[7] Dario De Domenico, Giuseppe Ricciardi. An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(5): 1169-1192.
[8] D. Pietrosanti, M. De Angelis, M. Basili. Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(8): 1367-1388.
[9] Palacios-quiñonero F, Rubió-massegú J, Rossell J M, et al. Design of inerter-based multi-actuator systems for vibration control of adjacent structures[J]. Journal of the Franklin Institute, 2019, 356(14): 7785-7809.
[10] Agathoklis Giaralis, Francesco, et al. Wind-Induced Vibration Mitigation in Tall Buildings Using the Tuned Mass-Damper-Inerter[J]. Journal of Structural Engineering, 2017, 143(9): 04017127.
[11] Agathoklis Giaralis, Francesco Petrini. Optimum design of the tuned mass-damper-inerter for serviceability limit state performance in wind-excited tall buildings[J]. Procedia Engineering, 2017, 199(01): 1773-1778.
[12] 王钦华, 雷伟, 祝志文, 等. 单重和多重调谐质量惯容阻尼器控制连体超高层建筑风振响应比较研究[J]. 建筑结构学报, 2021, 42(04): 25-34.
Wang Qinhua, Lei Wei, Zhu Zhiwen, et al. Comparison of mitigation effects on wind-induced response of connected super-high-rise buildings controlled by TMDI and MTMDI[J]. Journal of Building Structures, 2021, 42(04): 25-34.
[13] Qinhua Wang, Haoshuai Qiao, Dario De Domenico, et al. Wind-Induced Response Control of High-Rise Buildings Using Inerter-Based Vibration Absorbers[J]. Applied Sciences, 2019, 9(23): 5045.
[14] Marian L, Giaralis A. Optimal design of a novel tuned mass-damper–inerter(TMDI) passive vibration control configuration for stochastically support-excited structural systems[J]. Probabilistic Engineering Mechanics, 2014, 38: 156-164.
[15] Daniele Pietrosanti, Maurizio De Angelis, Michela Basili. A generalized 2-DOF model for optimal design of MDOF structures controlled by Tuned Mass Damper Inerter (TMDI)[J]. International Journal of Mechanical Sciences, 2020, 185: 105849.
[16] 李超, 张瑞甫, 赵志鹏, 等. 调谐黏滞质量阻尼器基于遗传算法的参数优化研究[J]. 结构工程师, 2016, 32(04): 124-131.
Li Chao, Zhang Ruifu, Zhao Zhiping, et al. Optimum study of tuned viscous mass dampers based on genetic algorithm[J]. Structural Engineers, 2016, 32(04): 124-131.
[17] Hartog J. Mechanical Vibrations[M]. Serbiula (sistema Librum 2.0), 1985.
[18] 董飞, 孙飞飞, 尹文汉, 等. 钢板夹层阻尼高频TMD两阶段设计方法[J]. 建筑钢结构进展, 2021, 23(01): 85-93+100.
Dong Fei, Sun Feifei, Yin Wenhan, et al. Two-step design method of high frequency sandwich damping steel tuned mass damper[J]. Progress in Steel Building Structures, 2021, 23(01): 85-93+100.
[19] 李亚峰, 李寿英, 陈政清. 变化型惯质调谐质量阻尼器的优化与性能评价[J]. 振动工程学报, 2020, v.33(05): 21-28.
Li Yafeng, Li Shouying, Chen Zhengqing. Optimization and performance evaluation of variant tuned mass damper inerter[J]. Journal of Vibration Engineering, 2020, v.33 (05): 21-28.
[20] lkago K, Saito K, Inoue N. Seismic control of single‐degree‐of‐freedom structure using tuned viscous mass damper[J]. Earthquake Engineering & Structural Dynamics,2012, 41(3): 453-474.
[21] 罗浩, 张瑞甫, 沈华, 等. 基于定点理论的串联黏滞质量阻尼器参数优化[J]. 结构工程师, 2017, 33(02): 41-46.
Luo Hao, Zhang Ruifu, Shen Hua, et al. Parameters optimization of series viscous mass damper based on the fixed-point theory[J]. Structural Engineer, 2017, 33(02): 41-46.
[22] 侯景鹏, 吴兴宏, 孙自堂. 防振锤-输电线体系微风振动的研究与进展[J]. 合肥工业大学学报(自然科学版), 2011, 34(05): 743-747.
Hou Jingpeng, Wu Xinghong, Sun zitang. Advance in the research on wind oscillation of vibration damper-transmission system[J]. Journal of Hefei University of Technology(Natural Science), 2011, 34(05): 743-747.
[23] 董志聪, 刘荣海, 唐法庆, 等. 特高压输电线路微风振动危害及影响[J]. 云南电力技术, 2017, 45(05): 43-48.
Dong Zhicong, Liu Ronghai, Tang faqing, et al. Analysis of the hazard and influencing factors of the aeolian vibration in UHV transmission lines[J]. Yunnan Electric Power, 2017, 45(05): 43-48.
[24] 赵蓂冠, 王辉, 董新胜, 等. 某220kV架空线路地线断股故障分析[J]. 电工电气, 2021(03): 41-44.
Zhao Mingguan, Wang Hui, Dong Xinsheng, et al. Fault analysis of ground line broken strands in 220 kv overhead line[J]. Electrotechnics Electric, 2021(03): 41-44.
[25] Smith M C. Synthesis of mechanical networks: the inerter[C]// USA: Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 2:1657-1662.
[26] Evangelou S, Limebeer D, Sharp R S, et al. Steering compensation for high-performance motorcycles[C]// Bahamas: 2004 43rd IEEE Conference on Decision and Control (CDC), 2005, 1:749-754.
[27] Michael Z.Q. Chen, Christos Papageorgiou, Frank Scheibe, et al. The missing mechanical circuit element[J]. IEEE Circuits and Systems Magazine, 2009, 9(1): 10-26.
[28] Malcolm C. Smith,Stuart J. Swift. Design of passive vehicle suspensions for maximal least damping ratio[J]. Vehicle System Dynamics, 2016, 54(5): 568-584.
[29] I. Takewaki, S. Murakami, S. Yoshitomi, et al. Fundamental mechanism of earthquake response reduction in building structures with inertial dampers[J]. Structural Control and Health Monitoring, 2012, 19(6): 590-608.
[30] Chen Y C, Tu J Y, Wang F C. Earthquake vibration control for buildings with inerter networks[C]//Austria: 2015 European Control Conference (ECC), 2015, 3137-3142.
[31] Xiang Shi, Songye Zhu. Dynamic characteristics of stay cables with inerter dampers[J]. Journal of Sound and Vibration, 2018, 423: 287-305.
[32] 李锦华, 柴世宗, 张耀, 等. 基于频域分析方法的梁-TMDI系统的振动控制研究[J]. 振动与冲击, 2021, 40(11): 94-100.
Li Jinhua, Chai Shizong, Zhang Yao, et al. Vibration control of beam-TMDI system based on frequency domain analysis method [J]. Journal of Vibration and Shock, 2021, 40(11): 94-100.
[33] Ruifu Zhang, Zhipeng Zhao, Kaoshan Dai. Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system[J]. Engineering Structures, 2019, 180(02): 29-39.
[34] Hu Y, Chen M. Passive structural control with inerters for a floating offshore wind turbine[C]// China: 2017 36th Chinese Control Conference (CCC). IEEE, 2017, 9226-9271.
[35] 王玉梅, 周磊. 16WCEE中动力吸振技术的新进展[J]. 地震工程与工程振动, 2017, 37(03): 152-165.
Wang Yumei, Zhou Lei. New development of dynamic vibration absorption technologies in 16WCEE [J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(03): 152-165.
[36] Michael Z.Q. Chen, Christos Papageorgiou, et al. The missing mechanical circuit element[J]. IEEE Circuits and Systems Magazine, 2009, 9(1): 10-26.
[37] Arakaki T, Kuroda H, Arima F, et al. Development of seismic devices applied to ball screw: Part 1 basic performance test of RD-series[J]. AIJ Journal of Technology and Design. 1999, 5(8): 239-244.
[38] Wang, F-C, Hong, et al. Designing and testing a hydraulic inerter[J]. Proceedings of the Institution of Mechanical Engineers, 2010, 1(-1):1-7.
[39] Wang F-C, Lin T-C. Hydraulic Inerter Mechanism: US2009139225 [P]. 2009-6-4.
[40] Ruiz R, Taflanidis A A, Giaralis A, et al. Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures[J]. Engineering Structures, 2018, 177: 836-850.
[41] 背户一登任明章. 动力吸振器及其应用[M]. 机械工业出版社, 2013.
Beihu Yideng. Dynamic vibration absorber and its application [M]. China Machine Press, 2013.

PDF(2130 KB)

696

Accesses

0

Citation

Detail

段落导航
相关文章

/