高层建筑围护结构风压系数的概率特征及其极值POT估计

李寿科1,毛丹1,刘敏1,郭凡1,孙洪鑫1,陈元坤2,邓声祥3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 224-231.

PDF(2889 KB)
PDF(2889 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 224-231.
论文

高层建筑围护结构风压系数的概率特征及其极值POT估计

  • 李寿科1,毛丹1,刘敏1,郭凡1,孙洪鑫1,陈元坤2,邓声祥3
作者信息 +

Probability characteristics and extreme POT estimation of wind pressure coefficient of high-rise building envelope

  • LI Shouke1, MAO Dan1, LIU Min1, GUO Fan1, SUN Hongxin1, CHEN Yuankun2, DENG Shengxiang3
Author information +
文章历史 +

摘要

为获得高层建筑围护结构设计风荷载,通常需要考虑其表面风压系数的概率特征,进而进行极值估计。针对当前基于超越阈值模型的风压系数极值估计方法存在阈值选取困难,需要较大样本的不足,基于高层建筑标准模型进行风洞试验,首先研究其表面风压系数的概率特征,结果表明迎风区测点接近高斯分布,分离区测点风压系数母体接近Gamma分布,风压系数极小值接近GEV(General Extreme Value)分布;提出一种改进的POT(Peak Over Threshold)极值估计方法进行表面风压系数极值估计,进而与几种传统极值估计方法进行对比,结果表明改进POT极值估计方法可实现小样本的风压系数极值估计,其估计结果与大样本容量的标准极值偏差小于5%,且稳定性较好;最后给出了标准高层建筑模型表面极值风压系数。

Abstract

As determining the design wind loads of facades of high-rise buildings, the probability characteristics of pressure coefficients should be taken account into the estimation of extreme pressure coefficients. For overcome the deficiency of hardness for determining the threshold in the POT (Peak over threshold) method for extreme estimation, the wind tunnel tests of CAARC building were conducted in wind tunnel. Firstly, the probability characteristics of pressure coefficients are specially studied, and it is shown that Gaussian distribution is good for the pressure coefficient in the upwind region, as well as the Gamma distribution is good for the pressure coefficient in the leeward region, the GEV (Generalized Extreme Value) distribution is good for the minimum pressure coefficient in the upwind region. Secondly, a modified POT method is proposed to estimate the extreme of pressure coefficients, it is indicated that the modified POT method is more accurate and more stable than the other extreme method. The bias between modified POT method and standard extreme is lower than 5% with 5 time-history samples. At last, the distributions of extreme pressure coefficients are given out for designing.

关键词

围护结构 / 风洞试验 / 风压系数 / 极值 / 超越阈值方法 / GPD概率分布 / CAARC标准模型

引用本文

导出引用
李寿科1,毛丹1,刘敏1,郭凡1,孙洪鑫1,陈元坤2,邓声祥3. 高层建筑围护结构风压系数的概率特征及其极值POT估计[J]. 振动与冲击, 2023, 42(1): 224-231
LI Shouke1, MAO Dan1, LIU Min1, GUO Fan1, SUN Hongxin1, CHEN Yuankun2, DENG Shengxiang3. Probability characteristics and extreme POT estimation of wind pressure coefficient of high-rise building envelope[J]. Journal of Vibration and Shock, 2023, 42(1): 224-231

参考文献

[1] 田玉基, 杨庆山. 非高斯风压时程峰值因子的简化计算式[J]. 建筑结构学报, 2015, 36(3):20-28.
TIAN Yu-ji, YANG Qing-Shan. Reduced formula of peak factor for non-Gaussian wind pressure history [J]. Journal of Building Structures, 2015, 03: 20-28.
[2] 陶玲, 黄鹏, 顾明,全涌. 低矮房屋风压时程的概率分布[J]. 同济大学学报(自然科学版), 2013, 41(1):27-32.
TAO Ling, HUANG Peng, GU Ming, QUAN Yong. probability density distribution of wind pressure time series of low-rise buildings. Journal of Tongji University (Nature Science) , 2013, 41(1):27-32.
[3] 罗颖, 黄国庆, 李明水,彭留留. 基于风洞数据的低矮房屋双坡屋面风压非高斯特性[J]. 空气动力学学报, 2018, 36(4).
 LUO Ying, HUANG Guo-qing, LI Ming-shui, PENG Liu-Liu. Non-gaussian characteristics of wind pressure for gable roof of low-rise buildings based on wind tunnel data[J]. Acta Aerodynamica Sinica, 2018, 36(4).
[4] 孙瑛, 武岳, 林志兴,沈世钊. 大跨屋盖结构风压脉动的非高斯特性[J]. 土木工程学报, 2007(04):1-5.
SUN Ying, WU Yue, LIN Zhi-xing, SHENG Shi-Zhao.Non-Gaussian features of fluctuating wind pressures on long span roof. China Civil Engineering Journal, 2007(04):1-5.
[5] Yuan K, Hui Y, Chen Z. Effects of facade appurtenances on the local pressure of high-rise building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 178: 26-37.
[6] Sadek, F.E.S., Peak Non-Gaussian Wind Effects for Database-Assisted Low-Rise Building Design. Journal of Engineering Mechanics-Asce, 2002. 5(128): p. 530-539.
[7] Ma X, Xu F. Peak factor estimation of non-Gaussian wind pressure on high-rise buildings[J]. The Structural Design of Tall and Special Buildings, 2017, 26(17): e1386.
[8] Liu, M., Chen, X., Yang, Q.Estimation of peak factor of non-Gaussian wind pressures by improved moment-based hermite model. J. Eng. Mech, 2017. 143 (7),06017006.
[9] 罗颖, 黄国庆, 杨庆山,田玉基. 基于高阶矩的非高斯风压极值计算[J]. 建筑结构学报, 2018, 039(002):146-152.
LUO Ying, HUANG Guo-qing, Yang Qing-shan, TIAN Yu-ji. Calculation of peak non-gaussian wind pressures based on high-order moments. Journal of Building Structures, 2018, 039(002):146-152.
[10] 林强, 刘敏, 杨庆山,等. 非高斯风压峰值因子估计:基于矩的转换过程法的对比研究[J]. 工程力学, 2020, 37(04):87-95.
LIN Qiang, LIU Min, YANG Qing-shan, WU Feng-bo, HUANG GUO-qing. A Comparative study on moment-based translation process methods for the peak factor estimation of non-gaussian wind pressure. Engineering Mechanics, 2020, 37(04):87-95.
[11] Holmes, J. D., Cochran, L. S. (2003), Probability distributions of extreme pressure coefficients. Journal of Wind Engineering and Industrial Aerodynamics, 91(7): 893-901.
[12] Liang Q S , Fu J Y , Li Z , et al. Bimodal distribution of wind pressure on windward facades of high-rise buildings induced by interference effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 200:104156.
[13] 全涌, 顾明 ,陈斌, 田村幸雄.非高斯风压的极值计算方法[J].力学学报,2010,42(03):560-566.
 Quan Yong,Gu Ming,Chen Bin,et Tamura Yukio. Study on the extreme value estimating method of non-gaussian wind pressure, Chinese Journal of Theoretical and Applied Mechanics, 2010,42(03):560-566.
[14] 李寿科, 李寿英, 陈政清, 孙洪鑫. 基于非高斯仿真的风压系数极值计算方法[J]. 振动与冲击, 2014, 33(024):123-128.
LI Shou-ke, LI Shou-ying, CHEN Zheng-qing, SUN Hongxing. Prediction of wind pressure peak factor with non-gaussian simulation,Journal of Vibration and Shock, 2014, 33(024):123-128.
[15] Simiu E, Heckert N A. Extreme wind distribution tails: a “peaks over threshold” approach[J]. Journal of structural engineering, 1996, 122(5): 539-547.
[16] 李正农,伍欢庆.风压极值的阈值模型研究[J].地震工程与工程振动,2015,35(01):189-198.
LI Zheng-nong, WU Huan-qing. A study on extreme wind pressure. Earthquake engineering and engineering dynamics, 2015,35(01):189-198
[17] Ding J, Chen X. Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples[J]. Engineering Structures, 2014, 80: 75-88.
[18] 中华人民共和国国家标准. 建筑结构荷载规范(GB 5009-2012)[S]. 北京:中国建筑工业出版社,2012.
Chinese Specification. Load code for the design of building structures GB 50009—2012. BEI Jing
[19] Pickands III J. Statistical inference using extreme order statistics[J]. Annals of statistics, 1975, 3(1): 119-131.
[20] Holmes J D , Moriarty W W . Application of the generalized Pareto distribution to extreme value analysis in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1-3):1-10.
[21] Landwehr J M, Matalas N C, Wallis J R. Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles[J]. Water resources research, 1979, 15(5): 1055-1064. 

PDF(2889 KB)

Accesses

Citation

Detail

段落导航
相关文章

/