饱和混凝土冲击破坏的近场动力学建模分析

武立伟,马启鹏,黄丹

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 28-37.

PDF(3135 KB)
PDF(3135 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 28-37.
论文

饱和混凝土冲击破坏的近场动力学建模分析

  • 武立伟,马启鹏,黄丹
作者信息 +

Near field dynamic modeling of saturated concrete impact failure

  • WU Liwei, MA Qipeng, HUANG Dan
Author information +
文章历史 +

摘要

在常规态型近场动力学理论框架下提出一种考虑孔隙作用的亚均质饱和混凝土模型。该模型体现了混凝土的细观结构非均质性,在“键”层次上将混凝土细观尺度的各相成分与宏观尺度的断裂行为联系起来,同时不增加计算量。进一步通过物质点间“键”的缺失来表征内部孔隙的存在,并分析孔隙率对混凝土力学性能的影响。最后基于两相球模型得到饱和混凝土的有效体积模量与剪切模量,建立饱和混凝土模型。基于提出的模型对饱和混凝土中的波传播问题及动态冲击破坏问题进行数值模拟,所得结果与相应试验结果吻合较好,验证了该模型和方法对研究饱和混凝土动态冲击问题的适用性。

Abstract

An intermediately homogenized peridynamic (IH-PD) model for saturated concrete has been proposed under the configuration of the ordinary state-based peridynamic theory, and the pore of saturated concrete is considered as well. The information from the composition at the mesoscale is linked to the macroscale fracture behavior in this model, where the heterogeneity of concrete is taken into account, and the calculation cost does not increase. The pore of concrete is implemented by deleting the bond between two material points, and its effect on the mechanical properties of concrete is further analyzed. Moreover, the effective bulk modulus and shear modulus of cement mortar in saturated concrete is obtained based on the two-phase spherical model. In the last, the validity of the proposed model and algorithms is established through simulating the wave propagation in a saturated concrete slab and the impact failure experimental test. The numerical results are in good agreement with the corresponding experimental observations.

关键词

饱和混凝土 / 冲击破坏 / 亚均质模型 / 近场动力学

Key words

saturated concrete / impact failure / intermediately homogenized model / peridynamics

引用本文

导出引用
武立伟,马启鹏,黄丹. 饱和混凝土冲击破坏的近场动力学建模分析[J]. 振动与冲击, 2023, 42(1): 28-37
WU Liwei, MA Qipeng, HUANG Dan. Near field dynamic modeling of saturated concrete impact failure[J]. Journal of Vibration and Shock, 2023, 42(1): 28-37

参考文献

[1] RIZZO, FRANK J. An integral equation approach to boundary value problems of classical elastostatics [J]. Quarterly of Applied Mathematics, 1967, 25(1): 83-95.
[2] 石根华. 数值流形方法与非连续变形分析: 裴觉民译 [M]. 清华大学出版社,1999.
[3] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Géotechnique, 2008, 30(3): 331-336.
[4] MA G, AN X, HE L. The numerical manifold method: A Review [J]. International Journal of Computational Methods, 2010, 7(1): 1-32.
[5] 余天堂. 扩展有限单元法: 理论、应用及程序 [M]. 科学出版社,2014.
[6] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209.
[7] 黄丹,章青,乔丕忠,等. 近场动力学方法及其应用 [J]. 力学进展,2010, 40(4): 448-489.
 HUANG Dan, ZHANG Qing, QIAO Pizhong, et al. A review on peridynamics method and its application [J]. Advance in Mechanics, 2010, 40(4): 448-489.
[8] WANG H, XU Y, HUANG D. A non-ordinary state-based peridynamic formulation for thermo-visco-plastic deformation and impact fracture [J]. International Journal of Mechanical Sciences, 2019, 159: 336-344.
[9] 周小平,王允腾,钱七虎. 爆破荷载作用下岩石破坏特性的“共轭键”基近场 动力学数值模拟研究 [J]. 中国科学:物理学 力学 天文学, 2019, 50(2): 1-13.
 ZHOU Xiaoping, WANG Yunteng, QIAN Qihu. Numerical simulations of failure characteristics of rock materials under blasting loads using the conjugated bond-pair-based peridynamics [J]. Scientia Sinica (Physica,Mechanica & Astronomica), 2019, 50(2): 1-13.
[10] WU L, HUANG D, BOBARU F. A reformulated rate-dependent visco-elastic model for dynamic deformation and fracture of PMMA with peridynamics [J]. International Journal of Impact Engineering, 2020: 103791.
[11] 黄小华,李双,金艳丽,等. 冲击荷载作用下泊松比对脆性材料破坏影响的近场动力学分析 [J]. 振动与冲击, 2020, 39(20): 204-215.
 HUANG Xiaohua, LI Shuang, JIN Yanli, et al. Effect of Poisson’s ratio on the fracture of brittle materials under impact loading via peridynamics [J]. Journal of Vibration and Shock, 2020, 39(20): 204-215.
[12] 熊伟鹏,王超,傅江妍,等. 冰球冲击试验的近场动力学方法数值模拟 [J]. 振动与冲击, 2020, 39(7): 148-155.
 XIONG Weipeng, WANG Chao, FU Jiangyan, et al. Numerical simulation of ice sphere impact test by peridynamics method [J]. Journal of Vibration and Shock, 2020, 39(7): 148-155.
[13] GERSTLE W, SAU N, SILLING S. Peridynamic modeling of concrete structures [J]. Nuclear engineering and design, 2007, 237(12-13): 1250-1258.
[14] HUANG D, LU G, WANG C, et al. An extended peridynamic approach for deformation and fracture analysis [J]. Engineering Fracture Mechanics, 2015, 141: 196-211.
[15] 顾鑫,章青,黄丹. 基于近场动力学方法的混凝土板侵彻问题研究 [J]. 振动与冲击, 2016, 35(6): 52-58.
 GU Xin, ZHANG Qing, HUANG Dan. Peridynamics used in solving penetration problem of concrete slabs [J]. Journal of Vibration and Shock, 2016, 35(6): 52-58.
[16] 沈峰,章青,顾鑫. 弹丸侵彻混凝土靶板破坏过程的近场动力学模拟 [J]. 重庆大学学报, 2019, 42(1): 64-69.
 SHEN Feng, ZHANG Qing, GU Xin. Peridynamics modeling for projectile penetrating into concrete [J]. Journal of Chongqing University, 2019, 42(1): 64-69.
[17] WU L, HUANG D, XU Y, et al. A rate-dependent dynamic damage model in peridynamics for concrete under impact loading [J]. International Journal of Damage Mechanics, 2020, 29(7): 1035-1058.
[18] CHEN W, GU X, ZHANG Q, et al. A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking [J]. Engineering Fracture Mechanics, 2021, 242: 107463.
[19] LI W, GUO L. Meso-fracture simulation of cracking process in concrete incorporating three-phase characteristics by peridynamic method [J]. Construction and Building Materials, 2018, 161: 665-675.
[20] CHEN Z, NIAZI S, BOBARU F. A peridynamic model for brittle damage and fracture in porous materials [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104159.
[21] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007, 88(2): 151-184.
[22] JIN L, DU X, MA G. Macroscopic effective moduli and tensile strength of saturated concrete [J]. Cement and Concrete Research, 2012, 42(12): 1590-1600.
[23] ROSSI P, VAN Mier J G M, BOULAY C, et al. The dynamic behaviour of concrete: influence of free water [J]. Materials and Structures, 1992, 25(9): 509-514.
[24] WANG H, LI Q. Prediction of elastic modulus and Poisson’s ratio for unsaturated concrete [J]. International Journal of Solids and Structures, 2007, 44(5): 1370-1379.
[25] LI G, ZHAO Y, PANG S, et al. Effective Young’s modulus estimation of concrete [J]. Cement and Concrete Research, 1999, 29(9): 1455-1462.
[26] LEE B J, KEE S H, OH T, et al. Evaluating the Dynamic Elastic Modulus of Concrete Using Shear-Wave Velocity Measurements [J]. Advances in Materials Science and Engineering, 2017: 1651753.
[27] STOCK A F, HANNANTT D J, WILLIAMS R I. The effect of aggregate concentration upon the strength and modulus of elasticity of concrete [J]. Magazine of Concrete Research, 1979, 32(113): 246-250.
[28] LI G, ZHAO Y, PANG S. Four-phase sphere modeling of effective bulk modulus of concrete [J]. Cement and Concrete Research, 1999, 29(6): 839-845.
[29] 吴震. EPS多孔混凝土力学性能试验及三维数值模拟研究[D]. 上海: 上海交通大学,2012.
[30] FORQUIN P, SALLIER L, PONTIROLI C. A numerical study on the influence of free water content on the ballistic performances of plain concrete targets [J]. Mechanics of Materials, 2015, 89: 176-189.

PDF(3135 KB)

Accesses

Citation

Detail

段落导航
相关文章

/