四分裂导线-间隔棒体系直流融冰时子导线不同步脱冰动力响应分析

祝贺1,王玮琦1,2,邢宏超1,2,廖汉梁1,陈桓1,2,武文韬1,2,周月帅1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 282-291.

PDF(2564 KB)
PDF(2564 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 282-291.
论文

四分裂导线-间隔棒体系直流融冰时子导线不同步脱冰动力响应分析

  • 祝贺1,王玮琦1,2,邢宏超1,2,廖汉梁1,陈桓1,2,武文韬1,2,周月帅1,2
作者信息 +

Dynamic response analysis of sub-conductor non-synchronous deicing during DC ice-melting of four-bundle conductor spacer system

  • ZHU He1, WANG Weiqi1,2, XING Hongchao1,2, LIAO Hanliang1, CHEN Huan1,2, WU Wentao1,2, ZHOU Yueshuai1,2
Author information +
文章历史 +

摘要

为了研究覆冰导线在直流融冰过程下覆冰融化脱落问题,以LGJ-400/50输电导线为研究对象,应用ANSYS LS-DYNA PrepPost采用非线性结构动力学模型,建立实际运行过程分裂导线体系有限元模型。在有限元分析过程中,考虑实际导线情况,采用SOLID45实体单元对导线进行分层建模,计算时采用生死单元法杀死覆冰单元,更加准确模拟融冰时的实际情况。目前对分裂导线脱冰研究大多将分裂导线等效成单导线进行计算,在实际融冰操作过程中,分裂导线体系存在不同步脱冰现象,需对不同子导线脱冰时的情况进行分析。结果表明,直流融冰下脱冰导线的跳跃高度比正常脱冰的跳跃高度小,导线脱冰跳跃高度及导线张力随融冰电流增加而减小;四分裂导线-间隔棒体系子导线不同步脱冰时,对角线两根子导线脱冰及下方两根子导线脱冰工况下,分裂导线体系较为稳定,其它工况子导线不同步脱冰时,四分裂导线-间隔棒体系存在横向摆幅,进而产生扭转风险,会造成导线磨损和断股事故发生。

Abstract

In order to study the problem of ice melting and falling off of iced conductor under DC ice melting process, taking the lgj-400/50 transmission conductor as the research object, the finite element model of quad bundle conductor system in actual operation process is established by using ANSYS LS-DYNA preppost and nonlinear structural dynamics model. In the process of finite element analysis, solid45 element is used for layered modeling of the conductor, and the life and death element method is used to kill the icing element in the calculation, so as to more accurately simulate the actual situation during ice melting. At present, most studies on deicing of split conductors are equivalent to single conductors for calculation,During the actual ice melting operation, the split conductor has the phenomenon of asynchronous deicing. The deicing conditions of different sub conductors are analyzed. The results show that the jump height of deicing conductor under DC deicing is smaller than that of normal deicing, and the jump height and tension of conductor deicing decrease with the increase of deicing current; For the quad bundle conductor spacer system, when the sub conductors are not de iced synchronously, the diagonal de icing of the two sub conductors and the de icing of the two sub conductors below are relatively stable. When the sub conductors are not de iced synchronously under other working conditions, the quad bundle conductor spacer system has lateral swing, resulting in torsional risk, which will cause conductor wear and strand breakage accidents.

关键词

分裂导线体系 / 直流融冰 / 子导线 / 不同步脱冰 / 动力响应

Key words

Split conductor spacer system / Dc melting ice / Sub-conductor / Asynchronous deicing / Dynamic response

引用本文

导出引用
祝贺1,王玮琦1,2,邢宏超1,2,廖汉梁1,陈桓1,2,武文韬1,2,周月帅1,2. 四分裂导线-间隔棒体系直流融冰时子导线不同步脱冰动力响应分析[J]. 振动与冲击, 2023, 42(1): 282-291
ZHU He1, WANG Weiqi1,2, XING Hongchao1,2, LIAO Hanliang1, CHEN Huan1,2, WU Wentao1,2, ZHOU Yueshuai1,2. Dynamic response analysis of sub-conductor non-synchronous deicing during DC ice-melting of four-bundle conductor spacer system[J]. Journal of Vibration and Shock, 2023, 42(1): 282-291

参考文献

[1]  中国南方电网公司. 电网防冰融冰技术及应用[M].北京:中国电力出版社,2010:1-12.
[2]  蒋兴良,张志劲,胡琴,等. 再次面临电网冰雪灾害的反思与思考[J].高电压技术,2018,44(02):463-469.
Jiang Xing-liang, Zhang Zhi-jin,Hu qin,et al. Thinkings on the restrike of ice and snow disaster to the power grid[J]. High Voltage Technology,2018,44(2):463-469.
[3]  王勇,苗虹,莫思特,等. 高压架空输电线路防冰、融冰、除冰技术研究综述[J].电力系统保护与控制,2020,48(18):178-187.
Wang Yong, MIAO Hong, Mo Si-te, et al. Summary of research on anti-ice, ice melting and de-icing of high voltage overhead transmission lines[J].Power System Protection and Control,2020,48(18):178-187.
[4]  巢亚锋,岳一石,王成,等. 输电线路融冰、除冰技术研究综述[J].高压电器,2016,52(11):1-9+24.
Chao Ya-feng, Yue Yi-shi, Wang Cheng, et al. De-icing techniques for ice-covered transmission lines: a review [J].High Voltage Appliances,2016,52(11):1-9.
[5]  范松海,毕茂强,龚奕宇,等. 自然条件下导线覆冰形状及对融冰过程的影响研究[J].高压电器,2019,55(06):184-191.
Fan Song-hai, Bi Mao-qiang, Gong Yi-yu, et al. Influence of ice shape around transmission line on ice melting process under natural condition[J].High Voltage Apparatus ,2019,55(6):184-191.
[6]  罗日成,潘俊文,刘化交,等. 超/特高压输电线路带电直流融冰方法[J].中南大学学报(自然科学版),2016,47(05):1551-1558.
Luo Ri-cheng, Pan Jun-wen, Liu Hua-jiao, et al. Aliving DC ice-melting approach for UHV & EHV transmission lines[J].Journal of Central South University (Science and Technology,2016,47(5):1551-1558.
[7]  王璋奇,齐立忠,王剑,等. 架空输电线非同期脱冰跳跃动张力实验研究[J].振动与冲击,2016,35(22):61-65.
Wang Zhang-qi, QI Li-zhong, Wang Jian, et al. Experiments on the dynamic tension of an overhead conductor under the asynchronous ice shedding[J].Journal of Vibration and Shock,2016,35(22):61-65.
[8]  王璋奇,赵星驰. 基于MATLAB/ANSYS的架空输电线脱冰仿真实验系统[J].实验技术与管理,2019,36(07):106-110.
Wang Zhang-qi, ZHAO Xing-chi. Deicing Simulation Experimental System of Overhead Transmission Line Based on MATLAB/ANSYS [J]. Experimental technology and management,2019,36(07):106-110.
[9]  黄新波,徐冠华,肖渊,等. 塔线体系脱冰不平衡张力影响因素分析[J].中国电力,2017,50(11):96-102.
Huang Xin-bo, Xu Guan-hua, Xiao Yuan, et al. China electric power[J],2017,50(11):96-102.
[10] 李宏男,吴育炎. 输电线路覆冰脱落动力效应试验研究[J].土木工程学报,2019,52(05):35-46+100.
Li Hong-nan, Wu Yu-yan. Experimental study on dynamic effect of ice shedding on transmission line [J]. China civil engineering journal,2019,52(05):35-46+100.
[11] Kunpeng Ji, Xiaoming Rui, Lin Li, et al. A novel ice-shedding model for overhead power line conductors with the consideration of adhesive/cohesive forces[J]. Computers and Structures,2015,157:
[12] Jamaleddine A,McClure G,Rousselet J, et al. Simulation of ice-shedding on electrical transmission lines using adina[J]. Pergamon,1993,47(4-5):
[13] 伍川,叶中飞,陶亚光,等. 特高压大截面导线冰跳高度及横向摆幅研究[J].应用力学学报,2020,37(05):2013-2020+2321.
Wu Chuan, Ye Zhong-fei, Tao Ya-guang, et al. Research on ice Jump Height and Transverse Swing of Ultra-high Voltage Large cross-section Conductor [J].Chinese Journal of Applied Mechanics,2020,37(05):2013-2020+2321.
[14] 吴天宝,胡中原,王健,等. 输电线路脱冰跳跃动态模型研究[J].应用力学学报,2018,35(01):134-140+233.
Wu Tian-bao, Hu Zhong-yuan, Wang Jian,et al. Dynamic Model of deicing jump in transmission lines [J].Chinese journal of applied mechanics,2018,35(01):134-140+233.
[15] 晏致涛,李孟珠,熊辉,等. 考虑高差覆冰输电线路链式脱冰振动[J].湖南大学学报(自然科学版),2020,47(03):115-121.
Yan Zhi-tao, Li Meng-zhu, Xiong Hui, et al. Chain deicing vibration of ice-covered transmission line considering height difference [J].Journal of hunan university (natural science edition),2020,47(03):115-121.
[16] Shan Gao, Cong Zeng, Linqiang Zhou, et al. Numerical analysis of the dynamic effects of wine-cup shape power transmission tower-line system under ice-shedding[J]. Structures,2020,24(C):
[17] 沈国辉,徐亮,徐晓斌,等. 分裂导线-间隔棒体系的覆冰脱落研究[J].电网技术, 2012,36(01):201-206.
SHEN Guohui, XU Liang, XU Xiaobin, et al. Power grid technology, 2012,36(01):201-206.
[18] 董永星,武怡帆,芮晓明,等. 分裂导线不同步脱冰动力响应研究[J].华北电力大学学报(自然科学版),2018,45(01):86-91+100.
DONG Yongxing, Wu Yifan, Rui Xiaoming, et al. Dynamic response of dissynchronous deicing of split conductor [J]. Journal of north China electric power university (natural science edition),2018,45(01):86-91+100.
[19] Guizao Huang, Bo Yan, Nan Wen, et al. Study on jump height of transmission lines after ice-shedding by reduced-scale modeling test[J]. Cold Regions Science and Technology,2019,165:
[20] Guizao Huang, Bo Yan, Zheyue Mou, et al. Numerical investigation into torsional behavior of quad bundle conductors[J]. IEEE Transactions on Power Delivery,2020,PP(99):
[21] 韩军科,杨靖波,杨风利,等. 超/特高压同塔多回输电线路脱冰跳跃动力响应分析[J].电网技术,2012,36(09):61-67.
Han Junke, Yang Jingbo, Yang Fengli, et al. Dynamic response analysis of deicing jump of EHV / UHV multi circuit transmission lines on the same tower [J]. Power grid technology, 2012,36 (09): 61-67.
[22] 蒋兴良,毕茂强,黎振宇,等. 自然条件下导线直流融冰与脱冰过程研究[J].电网技术,2013,37(09):2626-2631.
Jiang Xing-liang, Bi Mao-qiang, Li Zhen-yu, et al. Study on DC deicing and deicing process of conductor under natural conditions [J]. Power grid technology, 2013,37 (09): 2626-2631
[23] 直流融冰系统设计技术规程(DL/T5511-2016)
[24] 李黎,杨斌,赵鑫,等. 输电线路脱冰参数化有限元法的实现及应用[J].华中科技大学学报(自然科学版),2016,44(04):68-73.
Li Li, Yang Bin, Zhao Xin, et al. Realization and application of parametric finite element method for deicing of transmission lines [J]. Journal of huazhong university of science and technology (natural science edition),2016,44(04):
68-73.
[25] 沈国辉,徐晓斌,楼文娟,等. 导线覆冰脱冰有限元模拟方法的适用性分析[J].工程力学,2011,28(10):9-15+40.
SHEN Guohui, XU Xiaobin, Lou Wenjuan, et al. Applicability analysis of finite element simulation method for wire icing deicing [J]. Engineering mechanics,2011,28(10):9-15+40.
[26] Xiaobo Meng, Liming Wang, Lei Hou, et al. Dynamic characteristic of ice-shedding on UHV overhead transmission lines[J]. Cold Regions Science and Technology,2011,66(1):
[27] 文楠,严波,林翔,等. 基于BP神经网络的导线脱冰跳跃高度预测模型[J].振动与冲击,2021,40(01):199-204.
Wen Nan, Yan Bo, Lin Xiang, et al. Prediction Model of Conductor Deicing Jump Height Based on BP Neural Network [J]. Journal of Vibration and Shock, 2021,40(01):199-204.
[28] 张殿生. 电力工程高压送电线路设计手册[M]. 北京: 中国电力出版社,2003.
[29] Yan, B.,Chen, K.,Guo, Y.,Liang, M.,Yuan, Q.. Numerical Simulation Study on Jump Height of Iced Transmission Lines After Ice Shedding[J]. IEEE Transactions on Power Delivery,2013,28(1):
[30] 孟遂民,孔伟,唐波. 架空输电线路设计[M].北京:中国电力出版社,2015.

PDF(2564 KB)

Accesses

Citation

Detail

段落导航
相关文章

/