明确在左右交替爆破施工情况下分岔小净距隧道中夹岩损伤规律,将有助于更好地保障隧道现场施工及围岩稳定。采用三维有限差分软件FLAC3D模拟了爆破荷载作用下分岔小净距隧道交替开挖过程,重点研究了中夹岩在不同开挖工况下损伤分布及演化规律,最后通过厦门海沧疏港通道分岔隧道工程项目现场声波损伤范围检测结果进行了验证。研究结果表明:爆破产生应力波在分岔口产生反射形成拉应力,使得分岔口断面损伤更严重;隧道中夹岩损伤呈不对称“V”字分布,由中夹岩内部至轮廓线损伤逐渐增大,主隧道侧中夹岩最大损伤在90°~120°范围内,匝道侧中夹岩最大损伤在90°范围内,中夹岩厚度对中夹岩损伤有较大影响,随着厚度的增加中夹岩损伤程度降低且损伤范围未贯通左右隧道;通过模拟改变不同进尺、开挖错距及开挖顺序发现,与2m进尺相比,5m进尺完全损伤区提高了58.5%,损伤贯通区提高了70%,错距1步较错距4步工况完全损伤区增加了1.27m,损伤贯通范围也出现一定增加,先开挖较小断面有利于中夹岩稳定,围岩损伤对称性较好,但远离中夹岩一侧岩体损伤会出现扩大,数值模拟结果与现场实测结果基本一致。模拟结果为该类公路分岔小净距隧道施工提供一定参考。
Abstract
Clarifying the law of rock damage in the bifurcation small net distance tunnel under the condition of alternating blasting construction will help to better ensure the construction of the tunnel site and the stability of the surrounding rock. The three-dimensional finite difference software FLAC3D simulated the excavation process of the bifurcated small net distance tunnel under the action of blasting load, focused on the damage distribution and evolution of the middle rock under different excavation conditions, and finally verified by the on-site acoustic damage range detection results of the Xiamen Haicang Dredging Channel Bifurcation Tunnel Project. The results show that the stress wave generated by blasting reflects at the fork to form tensile stress, which makes the damage to the fork section more serious; the damage to the sandwich rock in the tunnel is asymmetrically distributed, and the damage from the inside of the middle sandwich rock to the contour line gradually increases, the maximum damage of the middle rock on the main tunnel side is in the range of 90 ° to 120 °, the maximum damage of the middle sandwich rock on the ramp side is within the range of 90 °, and the thickness of the middle sandwich rock has a greater influence on the damage of the middle sandwich rock, and with the increase of the thickness, the degree of damage of the middle between the rock decreases and the damage range does not penetrate the left and right tunnels; Through the simulation to change different approaches, excavation staggered distance and excavation sequence, it is found that compared with 2m, the complete damage area of 5m approach is increased by 58.5%, the damage penetration area is increased by 70%, the complete damage area of the staggered 1 step is increased by 1.27m compared with the staggered 4-step working condition, and the damage penetration range is also increased, and the excavation of a smaller section is conducive to the stability of the middle rock, and the symmetry of the surrounding rock damage is better, but the damage to the rock mass on the side of the middle sandwich rock will be expanded, and the numerical simulation results are basically consistent with the actual measurement results of the site. The simulation results provide certain references for the construction of the small net distance tunnel of the bifurcation of the highway.
关键词
分岔隧道 /
中夹岩 /
爆破荷载 /
岩体损伤 /
损伤分布
{{custom_keyword}} /
Key words
bifurcation tunnel /
intermediate rock wall /
blasting load /
rock mass damage /
damage distribution
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LI C J, LI X B. Influence of wavelength-to-tunnel-diameter ratio on dynamic response of underground tunnels subjected to blasting loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2018.
[2]. 罗笙, 严鹏, 卢文波, 等. 深埋隧洞开挖爆破损伤数值模拟及损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(增1):2760-2772.
LUO Sheng, YAN Peng, LU Wenbo, et al. Research on the simulation of blasting damage and its mechanism of deep tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup1):2760-2772.
[3]. MOHAMED M, AZRUL M, ROSZILAH H, et al. Blast Damage Assessment of Symmetrical Box-Shaped Underground Tunnel According to Peak Particle Velocity (PPV) and Single Degree of Freedom (SDOF) Criteria[J]. Symmetry, 2018, 10(5):158-.
[4]. 宋肖龙, 高文学, 季金铭, 等.爆破振动对隧道围岩累积损伤效应的影响[J].振动与冲击,2020,39(24):54-62.
SONG Xiaolong, GAO Wenxue, JI Jinming, et al. Influence of blasting vibration on cumulative damage of surrounding rock[J]. Explosion and Shock Waves, 2020 ,39(24):54-62.
[5]. 杨国梁, 杨仁树, 车玉龙. 周期性爆破振动下围岩的损伤累积效应[J]. 煤炭学报, 2013, 38(增1):25-29.
YANG Gouliang,YANG Renshu,CHE Yulong. Damage accumulative effect of surrounding rock under periodic blasting vibration[J]. Journal of China Coal Society,2013,38(Sup1):25-29.
[6]. YANG,J,H,et al. Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel[J]. TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY,2018,71(Jan.):591-604.
[7]. 杨建华,卢文波,胡英国,等. 隧洞开挖重复爆炸荷载作用下围岩累积损伤特性[J]. 岩土力学, 2014, 35(02):511-518.
YANG Jianghua,LU Wenbo,HU Yinguo,et al. Accumulated damage in surrounding rocks due to repeated blasting loads during blasting excavation of tunnels[J]. Rock Soil Mech, 2014,35( 2) :511
[8]. 吉凌,周传波,张波,等. 大断面隧道爆破作用下围岩动力响应特性与损伤效应研究[J]. 铁道学报,2021,43(07):161-168.
JI Ling,ZHOU Chuanbo,ZHANG Bo,et al. Study on Dynamic Response and Damage Effect of Surrounding Rock in Large Tunnel under Blasting Excavation[J]. Journal of the China Railway Society,2021,43(7):161-168.
[9]. 曹峰,凌同华,李洁,等. 循环爆破荷载作用下小净距隧道中夹岩的累积损伤特征分析[J].振动与冲击,2018,37(23):141148.DOI:10.13465/j.cnki.jvs.2018.23.020.
CAO Feng,LIN Tonghua,LI Jie,et al. Cumulative damage feature analysis for shared rock in a neighborhood tunnel under cyclic explosion loading[J]. Journal of Vibration and Shock,2018,37(23):141–148.
[10]. 刘闽龙,陈士海,孙杰,等. 浅埋小净距隧道爆破损伤探测及数值模拟分析[J]. 爆炸与冲击,2021,41(11):149-157.
LIU Minlong,CHEN Shihai,SUN Jie,et al. Detection and numerical simulation of blasting-induced damage in shallow-buried twin tunnels with small spacing[J]. Explosion and Shock Waves,2021,41(11):149-157.
[11]. DENG X F,ZHU J B,CHEN S G,et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses[J]. Tunnelling and Underground Space Technology,2014,43:88-100.
[12]. GUAN X,ZHANG L,WANG Y,et al. Velocity and Stress Response and Damage Mechanism of Three Types Pipelines Subjected to Highway Tunnel Blasting Vibration[J]. Engineering Failure Analysis, 2020:104840.
[13]. 林从谋,蔡丽光,蒋丽丽. 小净距隧道爆破中夹岩累积损伤测试研究[J]. 兵工学报,2009,30(增2):228-232.
LIN Congmou,CAI Liguang,JIANG Lili. Study on cumulative damage of shared rock in small interval tunnel blast[J]. Acta Armamentarii,2009,30(Sup2):228-232.
[14]. 李小刚,周先齐,杨杭澎,等. 大跨度小净距隧道中夹岩爆破振动控制与损伤判别[J]. 隧道建设(中英文),2022,42(3):406-413.
LI Xiaogang,ZHOU Xianqi,YANG Hangpeng,et al. Vibration Control and Damage Determination of Blasting in a Large-span and Small-distance Tunnel[J]. Tunnel Construction,2022,42(3):406-413.
[15]. HMDI E,ROMDHANE N B,LECLEACH J M. A tensile damage model for rocks application to blast induced damage assessment[J]. Computers and Geotechnics,2011,38 ( 2 ):133-141.
[16]. 张国华,陈礼彪,夏祥,等. 大断面隧道爆破开挖围岩损伤范围试验研究及数值计算[J]. 岩石力学与工程学报, 2009, 28(8):1610-1619.
ZHANG Guohua,CHEN Libiao,XIA Xiang,et al. Numerical simulation and experimental study of damage range of surrounding rock in large tunnel under blasting excavation[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1610-1619.
[17]. HENRYCH J. The dynamics of explosion and its use [M]. New York:Elsevier Scientific Publishing Company,1979.
[18]. ESEN S,ONEDERRA I,BILGIN H A. Modelling the size of the crushed zone around a blasthole[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(4):485-495.
[19]. 赵婉婷,卢文波,杨建华,等. 深孔台阶爆破振动模拟中的等效荷载施加边界比较[J]. 爆破,2012,29(2):10-14+122.
ZHAO Wanting,LU Wenbo,YANG Jianhua,et al. Comparison of equivalent load in boundaries in deep-hole bench blasting vibration simulation[J]. Blasting,2012,29(2): 10-14+122.
[20]. 刘国华,王振宇.爆破荷载作用下隧道的动态响应与抗爆分析[J]. 浙江大学学报(工学版),2004,38(2):77-82.
LIU Guohua,WANG Zhenyu. Dynamic response and blast-resistance analysis of a tunnel subjected to blast loading[J]. Journal of Zhejiang University(Engineering Science),2004,38(2):77-82.
[21]. 李海潮,张升. 基于修正Lemaitre应变等价性假设的岩石损伤模型[J]. 岩土力学,2017,38(05):1321-1326+1334.
LI Hai-chao,ZHANG Sheng. A constitutive damage model of rock based on the assumption of modified Lemaitre strain equivalence hypothesis[J]. Rock and Soil Mechanics,2017,38(05):1321-1326+1334.
[22]. Hoek E,Brown E T. Practical estimates of rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8): 1165-1186.
[23]. 夏开宗,陈从新,刘秀敏,等.基于岩体波速的Hoek-Brown准则预测岩体力学参数方法及工程应用[J].岩石力学与工程学报,2013,32(7):1458-1466.
XIA Kaizong,CHEN Congxin,LIU Xiumin,et al. Estimation of Rock Mass Mechanical Parameters Based on Ultrasonic Velocity of Rock Mass and Hoek-Brown Criterion and Its Applicantion to Engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(7):1458-1466.
[24]. DL/T 5389-2007,水工建筑物岩石基础开挖工程施工技术规范[S]. 北京:中华人民共和国国家发展和改革委员会. 2007.
DL/T 5389-2007,Construction technical specifications on rock-foundation excavating engineering of hydraulic structures[S]. Beijing: National Development and Reform Commission.2007.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}