双索非线性振动瞬时相位差及其来源

孙测世1,林俊强1,邓正科2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 66-73.

PDF(1992 KB)
PDF(1992 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 66-73.
论文

双索非线性振动瞬时相位差及其来源

  • 孙测世1,林俊强1,邓正科2
作者信息 +

Instantaneous phase difference between nonlinear vibrations of double cables and its origin

  • SUN Ceshi1, LIN Junqiang1, DENG Zhengke2
Author information +
文章历史 +

摘要

为探究拉索间的同步或异步振动现象,对参数存在差异的双索的瞬时相频特性展开研究。推导了双索-质量块模型的无量纲动力学运动方程,采用伽辽金法得到离散的常微分方程,利用多尺度法进行求解。采用Runge-Kutta法和有限元法进行对比验证,三者结果均吻合良好。对不同参数双索的瞬时相位差来源进行了分析,结果表明:在某些频率范围内,高阶近似项对瞬时相位的影响不容忽略。双索的瞬时相位差来源于两个方面:一是线性解中相移值γ的差异;二是高阶近似解中漂移项占比参数𝛽的差异。

Abstract

In order to ascertain the phenomenon of synchronous and asynchronous vibration between cables, the instantaneous phase-frequency characteristics of double cables with different parameters are studied. The dimensionless dynamic equations of motion for the dual-cable-mass model were derived. The discrete ordinary differential equations were obtained using the Galerkin method and solved by the Method of Multiple Scales. The Runge-Kutta method and the Finite Element method are used parallelly to execute verification, and the results agree well with each other. The sources of the instantaneous phase difference of two cables with different parameters are analyzed, which show that the influence of high-order approximation on instantaneous phase cannot be ignored in some frequency range. The instantaneous phase difference of the double cables comes from two aspects: one is the difference in the phase shift value γ in the linear solution; the other is the difference in the proportion of the drift term parameters 𝛽 in the high-order approximate solution.

关键词

索结构 / 非线性振动 / 瞬时相位差 / 多尺度法 / 漂移项

Key words

Cable structure / Nonlinear vibration / Instantaneous phase difference / Phase-frequency characteristic / Drift term

引用本文

导出引用
孙测世1,林俊强1,邓正科2. 双索非线性振动瞬时相位差及其来源[J]. 振动与冲击, 2023, 42(1): 66-73
SUN Ceshi1, LIN Junqiang1, DENG Zhengke2. Instantaneous phase difference between nonlinear vibrations of double cables and its origin[J]. Journal of Vibration and Shock, 2023, 42(1): 66-73

参考文献

[1] Irvine H M. Cable structures[M]. Cambridge: The MIT Press, 1981, 1-152.
[2] 刘海涛, 魏明海, 肖仪清, 等. 索-梁耦合结构非线性分析[J]. 振动与冲击, 2015, 34(14): 147-152.
LIU Haitao, WEI Minghai, XIAO Yiqing, et al. Nonlinear response analysis of a cable-beam coupled system[J]. Journal of Vibration and Shock, 2015, 34(14): 147-152.
[3] Matsumoto M, Shiraishi N, Shirato H, Rain-wind induced vibration of cables of cable-stayed bridges[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 43(1-3):2011-2022.
[4] Ni Y Q, Wang X Y, Chen Z Q, et al. Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge [J]. Journal of Wind Engineering and industrial Aerodynamics, 2007, 95(5): 303-328.
[5] 李国豪. 桥梁结构稳定与振动(修订版)[M]. 北京: 中国铁道出版社, 1996.
LI Guohao. Stability and Vibration of Bridge Structures[M]. Peking: China Railway Publishing House. 1996.
[6] Matsumoto M, shiraishi N, Shirato H. Rain-wind induced vibration of cables of cable-stayed bridges[J]. Journal of Wind Engineering and industrial Aerodynamics, 1992, 43: 2011-2022.
[7] 孙测世. 大跨度斜拉桥非线性振动试验研究[D]. 长沙: 湖南大学, 2015.
SUN Ceshi. Experimental study of nonlinear vibrations of long-span cable-stayed bridge[D]. Changsha, Hunan University, 2015.
[8] 孟新田. 斜拉桥单梁-多索模型的非线性振动[J].中南大学学报(自然科学版), 2009, 40(03): 839-844.
MENG Xintian, Multi-cable stayed beam model and nonlinear vibration analysis of cable-stayed bridge[J]. Journal of Central South University (Science and Technology), 2009, 40(03): 839-844.
[9] 赵跃宇, 王涛, 康厚军, 斜拉桥双索与桥面耦合的非线性参数振动特性分析[J]. 湖南大学学报(自科科学版), 2008, 35(10): 1-5.
ZHAO Yueyu, WANG Tao, KANG Houjun. Performance Study of the Nonlinear Parametric Vibration of Coupled Bridge Decks and Two Cables[J]. Journal of Hunan University(Natural Sciences), 2008, 35(10): 1-5.
[10] Lepidi M, Gattulli V. A parametric multi-body section model for modal interactions of cable-supported bridges[J]. Journal of Sound and Vibration, 2014, 333(19): 4579-4596.
[11] Ahmad J, Cheng S. Effect of cross-link stiffness on the in-plane free vibration behaviour of a two-cable network[J]. Engineering Structures, 2013, 52: 570-580.
[12] Abdel-Ghaffar A M, Khalifa M A. Importance of cable vibration in dynamics of cable-stayed bridges[J]. Journal of Engineering Mechanics, 1991, 117(11): 2571-2589.
[13] 吴庆雄, 王文平, 陈宝春. 多索-梁结构固有振动特性分析[J]. 工程力学, 2017(1), 34: 109-116.
WU Qingxiong, WANG Wenping, CHEN Bao-chun. Natural Vibration Analysis of Multi-Cables-Stayed Beam Stractures[J]. Engineering Mechanics, 2017(1), 34: 109-116.
[14] Zhou H, Yang X, Sun L, et al. Free vibrations of a two-cable network with near-support dampers and a cross-link[J]. Structural Control and Health Monitoring, 2015, 22(9): 1173-1192.
[15] Perlikowski P, Kapitaniak M, Czolczynski K, et al. Chaos in coupled clocks[J]. International Journal of Bifurcation and Chaos, 2012, 22(12): 1250288.5.
[16] Wu Y, Wang N, Li l, et al. Anti-phase synchronization of two coupled mechanical metronomes[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012, 22(2): 023146.
[17] Czolczynski K, Perlikowski P, Stefanski A, et al. Synchronization of the self-excited pendula suspended on the vertically displacing beam[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(2): 386-400.
[18] Kapitaniak M, Perlikowski P, Kapitaniak T. Synchronous motion of two vertically excited planar elastic pendula[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(8): 2088-2096.
[19] Wu Q, Takahashi K, Nakamura S. Formulae for frequencies and modes of in-plane vibrations of small-sag inclined cables[J]. Journal of Sound & Vibration, 2005, 279(3-5): 1155-1169.
[20] 邓正科, 孙测世, 杨汝东. 不同索力斜拉索的主共振瞬时相频特性[J]. 应用数学和力学. 2021, 42(11), 1126-1135.
DENG Zhengke, SUN Ceshi, YANG Rudong. Transient primary resonance phase-frequency characteristics of stay cables with different tensions[J]. Applied Mathematics and Mechanics. 2021, 42(11), 1126-1135.

PDF(1992 KB)

376

Accesses

0

Citation

Detail

段落导航
相关文章

/