基于改进的信赖域模型管理技术识别风电转子系统不对中载荷

毛文贵,李建华,郭杰,周舟

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 74-80.

PDF(2078 KB)
PDF(2078 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 74-80.
论文

基于改进的信赖域模型管理技术识别风电转子系统不对中载荷

  • 毛文贵,李建华,郭杰,周舟
作者信息 +

Identification of misalignment load of wind turbine rotor system based on improved trust region model management technology

  • MAO Wengui, LI Jianhua, GUO Jie, ZHOU Zhou
Author information +
文章历史 +

摘要

针对求解耗时的风电转子系统不对中载荷识别问题,提出基于改进的信赖域模型管理技术的识别算法。该算法将整个先验分布空间的不对中载荷识别问题转化为一系列信赖域上的近似优化问题,通过区域遗传智能采样技术采集样本,加强径向基函数构建代理模型,再采用遗传算法进行近似优化。通过每个信赖域上的最小目标函数和近似优化结果确定信赖度和下代域的中心、半径,进而不断地缩放、平移信赖域,来保证获得与真实模型一致的不对中载荷。通过四种方法对比表明该方法样本遗传策略,遗传落在下代信赖域空间上的样本,减少实验设计样本个数而提高效率;最小目标函数作为信赖中心调整提高了关键区域代理模型的精度而加快收敛,降低了对代理模型精度的依赖。
关键词:信赖域模型管理技术;代理模型;遗传智能采样技术;风力发电机转子;不对中载荷

Abstract

In order to solve the time-consuming problem of misalignment load identification of wind power rotor system, an identification algorithm based on improved trust region model management technology is proposed. The method transforms the misalignment load identification problems in the entire prior distribution space into a series of approximation problems in trust region, in which, the regional genetic intelligent sampling technology is used to collect samples, the extended radial basis function is adopted to build a global metamodel, and then employs the genetic algorithm for approximate optimization. in the following, the minimum objective function and optimization result determine the reliability of center and radius of the next region. With constantly zooming, translating the trust region, the method ensures the misalignment load solutions in consistent with the true problem. The comparison of four methods shows that this proposed method can inherit samples falling in the next trust region to reduce the number of experimental design samples,and thus the efficiency is increased;Trust center adjustment strategy improves the accuracy of the metamodel in concerned space to accelerate convergence and reduces the dependance on metamodel accuracy.
Key words: rust region model management technology;Metamodel;Intelligent sampling;wind turbine rotor;misalignment load

关键词

信赖域模型管理技术 / 代理模型 / 遗传智能采样技术 / 风力发电机转子 / 不对中载荷

Key words

rust region model management technology / Metamodel / Intelligent sampling / wind turbine rotor / misalignment load

引用本文

导出引用
毛文贵,李建华,郭杰,周舟. 基于改进的信赖域模型管理技术识别风电转子系统不对中载荷[J]. 振动与冲击, 2023, 42(1): 74-80
MAO Wengui, LI Jianhua, GUO Jie, ZHOU Zhou. Identification of misalignment load of wind turbine rotor system based on improved trust region model management technology[J]. Journal of Vibration and Shock, 2023, 42(1): 74-80

参考文献

[1]韩清凯,王美令,赵广,冯国全. 转子系统不对中问题的研究进展[J]动力学与控制学报, 2016,14(1):1-13
HAN Qingkai,WANG Meiling,ZHAO Guang, et al. A review of rotor systems with misalignment[J]. Journal of dynamics and control, 2016,14(1):1-13.
[2]何振鹏, 徐唐进,刘佳航,等. 具有不对中故障的转子-滑动轴承系统动力学特性研究[J].润滑与密封, 2018,43 (8):36-45
HE Zhenpeng,XU Tangjin, LIU Jiahang,et al. Dynamics of Rotor-sliding Bearing System with Static Misalignment Fault[J]. Lubrication Engineering, 2018,43(8):36-45
[3]李建华,毛文贵,周舟. 基于改进的最大似然法识别风力发电机转子的载荷参数[J].振动与冲击,2020,39(10): 121-126
LI Jianhua, MAO Wengui, ZHOU Zhou. Identification of load parameters of wind turbine rotor based on improved maximum likelihood method[J]. Journal of Vibration and Shock,2020,39 (10):121-126
[4] 马晓光,于天龙,鲍艳秋,等.基于整机传动链的风电齿轮箱动力学分析[J].机械传动,2017,41(4):120-124
Ma Xiaoguang, Yu Tianlong, Bao Yanqiu, etal. Dynamics Analysis of Wind Turbine Gearbox based on Full Drivetrain [J]. Mechanical transmission,2017,41(4):120-124
[5] 秦波,崔海旭,王建国,等.风电机组膜片联轴器平行不对中动力学特性分析[J]. 机械设计与制造,2021,(10):155-158
QIN Bo,CUI Haixu,WANG Jianguo, etal. Dynamic Characteristics Analysis of Parallel Misalignment of Diaphragm Coupling in Wind Turbine[J]. Machinery Design & Manufacture ,2021, (10):155-158
[6] COSENZA Zachary,BLOCK David E. A generalizable hybrid search framework for optimizing expensive design problems using surrogate models[J]. Engineering Optimization, 2021. 53(10):1772-1785
[7]韩旭,姜潮,陈国栋,龙湘云.基于代理模型的汽车结构安全目标优化的研究报告[J]. 科技创新导报, 2016,19: 179-180
HAN Xu,JANG Chao,CHEN Guodong,et al.Multi-Objective Optimization Method Based on Metamodel for Vehicle Structural Safety[J]. Science and Technology Innovation Herald, 2016,19: 179-180
[8] BISUI Nantukumar,PANDA Geetanjali. Adaptive trust region scheme for multi-objective optimization problem using Geršgorin circle theorem[J].Journal of Applied Mathematics and Computing, 2021:1-22
[9]林浩波,吴立国,刘军辉.基于信赖域法的汽车门冲压拉深筋高度的优化设计[J].塑性工程学报,2020,27 (6):7 -12.
LIN Haobo,WU Liguo,LIU Junhui. Optimization design of stamping drawbead height of automobile door based on trust region method[J]. Journal of Plasticity Engineering,2020,27 ( 6) :7 -12.
[10] 林恬,孟小红,张致付.基于约束最小二乘与信赖域的储层参数反演方法[J].地球物理学报,2017,60(10) :3969-3983
LIN Tian,MENG Xiaohong,ZHANG Zhifu. The petrophysical parameter inversion method based on constrained least squares and trust region approach[J]. Chinese Journal of Geophysics ,2017,60(10) :3969-3983
[11]毛文贵,李建华,刘桂萍.遗传智能采样技术的贝叶斯理论识别滑动轴承-转子系统不平衡量[J]. 振动工程学报, 2019,32(4):660-667
MAO Wengui, LI Jianhua,LIU Guiping.Bayesian theory using genetic intelligent sampling technique to identify the unbalance parameters of a sliding bearing-rotor system[J]. Journal of Vibration Engineering, 2019,32(4):660-667
[12]韩清凯,于涛,王德友,等.故障转子系统的非线性振动分析与诊断方法[M]. 北京: 科学出版社,2010.
HAN Qingkai, YU Tao, WANG Deyou, et al. Nonlinear vibration analysis and diagnosis method of faulty rotor system[M]. Beijing: Science Press, 2010
[13] YI Titung, TZU Yipai. An ERBF Network Prediction of Taiwan’s Crude Birth Rate Taking Economic Growth Rate and National Income Indices as Input Variables[J]. Advanced Materials Research, 2014, 1044-1045: 1721-1724
[14] 赵丽娟,范佳艺.基于遗传算法的采煤机螺旋滚筒多目标优化设计[J]. 中国机械工程,2018,29(5):591-596
ZHAO Lijuan,FAN Jiayi.Shearer’s Helical Drum Multi-objective Optimization Design Based on GA[J].China mechanical engineering, 2018,29(5):591-596
[15] LU Xinmiao, WU Qiong, ZHOU Ying, etal.A Dynamic Swarm Firefly Algorithm Based on Chaos Theory and Max-Min Distance Algorithm [J]. Traitement du Signal,2019,36 (3):227-231

PDF(2078 KB)

Accesses

Citation

Detail

段落导航
相关文章

/