自复位摇摆双柱式桥墩抗震能力数值仿真分析

贾俊峰1,边嘉琛1,白玉磊1,魏博1,顾冉星1,周述美2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 89-97.

PDF(3418 KB)
PDF(3418 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 89-97.
论文

自复位摇摆双柱式桥墩抗震能力数值仿真分析

  • 贾俊峰1,边嘉琛1,白玉磊1,魏博1,顾冉星1,周述美2
作者信息 +

Numerical simulation and parametric analysis for aseismic capacity of self-resetting swing double-column pier

  • JIA Junfeng1, BIAN Jiachen1, BAI Yulei1, WEI Bo1, GU Ranxing1, ZHOU Shumei2
Author information +
文章历史 +

摘要

自复位摇摆桥墩是震后功能可恢复桥梁的重要结构形式。为研究不同设计参数对自复位摇摆双柱式桥墩抗震性能的影响,本文以我国首座自复位摇摆桥梁(跨京台高速洪士庄桥)为研究对象,推导了自复位摇摆双柱式桥墩的承载力计算公式;采用ABAQUS有限元软件建立自复位摇摆双柱式桥墩数值仿真模型,基于前期完成的拟静力试验结果验证模型的准确性。考虑预应力筋初始张拉力、耗能构件截面积、预应力筋配筋率等设计参数,分析了其对自复位摇摆双柱式桥墩抗震能力的影响规律。研究结果表明:预应力筋初始张拉力和配筋率增加,桥墩最大抗侧承载力增大,残余位移减小,耗能能力无明显变化;耗能部件截面积增加,桥墩最大承载力、残余位移以及耗能能力均有明显增大。参数分析表明自复位摇摆桥墩可同时具有良好的耗能能力和较小的残余位移,桥墩最大偏移率达4%时残余偏移率为0.56%,此时预应力筋配筋率为0.26%,初始张拉控制应力为极限强度的0.4倍,耗能部件对墩柱水平承载力贡献率为44.4%。研究成果可为自复位摇摆双柱式桥墩抗震能力设计和评估提供参考。

Abstract

Self-centering rocking pier is an important structural form of bridges whose function can be restored after earthquakes. In order to investigate the influence of different design parameters on the seismic performance of self-centering rocking double-column piers, the first self-centering rocking bridge (Hongshizhuang overpass bridge of Jingtai Expressway) in China was selected as the research object of this study. The bearing capacity calculation formula of self-centering rocking double-column piers was derived; ABAQUS finite element software was used to establish the numerical simulation model of self-centering rocking double-column pier, and the accuracy of the model was verified based on the quasi-static test results. Considering the design parameters such as the initial tension of prestressed tendons, the cross-section area of energy dissipaters and prestressed tendons, the influence of these parameters on the seismic capacity of self-centering rocking double-column piers were analyzed. The results showed that with the increase of initial tension and cross-section area of prestressed tendons, the maximum lateral bearing capacity of piers increased, the residual displacement decreased, and the energy dissipation capacity had negligible change. The maximum bearing capacity, residual displacement and energy dissipation capacity of piers increase significantly with the increase of cross-section area of energy dissipaters. The parameter analysis showed that the self-centering rocking pier can have good energy dissipation capacity and small residual displacement at the same time, and the residual displacement rate is 0.56% when the maximum displacement rate of the pier is 4%. The recommended design parameters to form aforementioned situation were that the ratio of prestressed tendons is 0.26%, the initial tension control stress is 0.4 times of the ultimate strength, and the contribution rate of energy dissipaters to the horizontal bearing capacity of the pier is 44.4%. Achievement in this study could provide references for design and assessment of seismic performance of self-centering rocking double-column piers.

关键词

桥梁工程
/ 自复位摇摆桥墩 / 数值模拟 / 抗震性能 / 参数化分析 / 力学行为

Key words

Bridge engineering / Self-centering bridge pier / Numerical simulation / Seismic performance / Parametric analysis / hysteretic behavior

引用本文

导出引用
贾俊峰1,边嘉琛1,白玉磊1,魏博1,顾冉星1,周述美2. 自复位摇摆双柱式桥墩抗震能力数值仿真分析[J]. 振动与冲击, 2023, 42(1): 89-97
JIA Junfeng1, BIAN Jiachen1, BAI Yulei1, WEI Bo1, GU Ranxing1, ZHOU Shumei2. Numerical simulation and parametric analysis for aseismic capacity of self-resetting swing double-column pier[J]. Journal of Vibration and Shock, 2023, 42(1): 89-97

参考文献

[1]Han Q, Du X, Liu J, Li Z, Li L, Zhao J. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering&Engineering Vibration 2009, 8(2): 263-273.
[2]吕西林, 陈云, 毛苑君. 结构抗震设计的新概念-可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7):941-948.
Lu Xilin, Chen Yun, Mao Yuanjun. A new concept of structural seismic design-restorable functional structure [J]. Journal of Tongji University (Natural Science Edition),2011, 39 (7): 941-948
[3]周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 39(9):1-10.
Zhou Ying, Lu Xilin. Review on swing structure and self-centering structure [J]. Journal of Building Structures, 2011, 39 (9): 1-10
[4]Housner G W. The behavior of inverted pendulum structure during earthquakes[J]. Bulletin of the Seismic Of America. 1963, 2(53):403-417.
[5]Mander J B, Cheng C T. Seismic resistance of bridge piers based on damage avoidance design[R]. USA: Technical Report NCEER, 1997.
[6]Cheng C T . Shaking table tests of a self-centering designed bridge substructure[J]. Engineering Structures, 2008, 30(12):3426-3433.
[7]Palermo A, Pampanin S, Calvi G M. Concept and development of hybrid solutions for seismic resistant bridge systems[J]. Journal of Earthquake Engineering, 2005, 9(06): 899-921
[8]Marriott D , Pampanin S , Palermo A. Quasi‐static and pseudo‐dynamic testing of unbonded post‐tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(3):331-354.
[9]Marriott D, Pampanin S, Palermo A. Biaxial testing of unbonded post‐tensioned rocking bridge piers with external replacable dissipaters[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(15):1723-1741.
[10]魏博, 贾俊峰, 欧进萍, 李逸松, 郭扬, 程寿山. 外置耗能器对自复位预制RC桥墩抗震性能的影响研究[J]. 中国公路学报, 2021, 34(2):220-229.
Wei Bo, Jia Junfeng, Ou Jinping, Li Yisong, Guo Yang, Cheng Shoushan. Study on the influence of external dampers on the seismic performance of self-centering precast RC piers
[J]. China Journal of Highway and Transport, [K]. 2021, 34 (2): 220-229
[11]贾俊峰, 魏博, 欧进萍, 李逸松, 程寿山. 外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40(5):154-162.
Jia Junfeng, Wei Bo, Ou Jinping, Li Yisong, Cheng Shoushan. Experimental study on seismic performance of prefabricated self-centering piers with external replaceable dampers [J].
Journal of Vibration and Shock, 2021, 40 (5): 154-162
[12]Stanton J, Eberhard M, Sanders D, et al. A pre-tensioned, rocking bridge bent for ABC in seismic regions[C]. Tenth U.S. National Conference on Earthquake Engineering, Frontiers of Earthquakes Engineering, July 21-25, 2014, Anchorage, Alaska, USA.
[13]Thonstad T, Mantawy I M, Stanton J F, et al. Shaking Table Performance of a New Bridge System with Pretensioned Rocking Columns[J]. Journal of Bridge Engineering, 2016, 21(4):04015079.
[14]贾俊峰, 赵建瑜, 张强, 亓路宽, 韩强, 杜修力. 后张预应力节段拼装CFST桥墩抗侧力学行为试验[J]. 中国公路学报, 2017, 30(3):236-245.
Jia Junfeng, Zhao Jianyu, Zhang Qiang, Qi lukuan, Han Qiang, Du Xiuli. Experimental study on lateral mechanical behavior of post tensioned prestressed segmental CFST piers [J].
China Journal of Highway and Transport, 2017, 30 (3): 236-245
[15]Junfeng Jia, Kaidi Zhang, Suiwen Wu, Yang Guo, Xiuli Du, Xu Wang. Seismic performance of self-centering precast segmental bridge columns under different lateral loading directions[J]. Engineering Structures, 2020, 221: 111037.
[16]杨怀茂.自复位摇摆双柱式桥墩抗震性能试验研究[D].北京:北京工业大学硕士学位论文. 2017.
Yang Huaimao. Experimental study on seismic performance of self-centering rocking double column pier [D]. Beijing: Beijing University of technology, 2017.
[17]Beck J L, Skinner R I. The seismic response of a reinforced concrete bridge pier designed to step[J]. Earthquake Engineering & Structural Dynamics, 1973, 2(4):343-358.
[18]Cormack L G. The design and construction of the major bridges on the Mangaweka rail deviation[J]. Transactions of the Institution of Professional Engineers New Zealand: Civil Engineering Section, 1988, 15(1):17-23.
[19]Astaneh-Asl A, Shen J H. Rocking behavior and retrofit of tall bridge piers[C]// Ang A H S, Villaverde R. Structural Engineering in Natural Hazards Mitigation. New York:American Society of Civil Engineers, 1993:121-126.
[20]Dowdell D J, Hamersley B A. Lions’ Gate bridge north approach: seismic retrofit[C]// Mazzolani, Federico M. Behaviour of Steel Structures in Seismic Areas. Proc, 3rd Int. Conf:STESSA 2000. Balkema, 2000:319-326.
[21]Jones M H, Holloway L J, Toan V, et al. Seismic retrofit detail of the 1927 Carquinez Bridge [C]//Practical Solutions for Bridge Strengthening & Rehabilitation Bsar II. 1997:81-89.
[22]Seim C, Ingham T, Rodríguez S . Seismic performance and retrofit of the Golden Gate Bridge. [J]. John F. Abel, 1994:762-771.
[23]Han Q ,Jia Z,Xu K, et al. Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188:218-232.
[24]Priestley MJN, McRae GA. Seismic Tests of Precast Beam-to-Column Joint Subassemblages With Unbonded Tendons[J]. PCI Journal, 1996, 41(1):64-81.

PDF(3418 KB)

469

Accesses

0

Citation

Detail

段落导航
相关文章

/