高阶Lamb波模态在腐蚀损伤处的透射特性分析

陈飞宇1,2,罗志3,曹徐伟4

振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 98-104.

PDF(2813 KB)
PDF(2813 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (1) : 98-104.
论文

高阶Lamb波模态在腐蚀损伤处的透射特性分析

  • 陈飞宇1,2,罗志3,曹徐伟4
作者信息 +

Transmission characteristics of high order Lamb wave modes at corrosion damages

  • CHEN Feiyu1,2, LUO Zhi3, CAO Xuwei4
Author information +
文章历史 +

摘要

高阶Lamb波模态的截止特性为大面积板壳类结构中腐蚀损伤的检测提供了一种有力的工具。研究高阶Lamb波在不同宽度、深度腐蚀损伤处的透射特性,可以为激励模态、频率的优化提供理论依据。基于有限元方法和单一模态激励技术,分析了略高于截止频率的A1高阶模态穿过腐蚀损伤后到达时间、透射幅值以及波包变形程度的变化,并研究了其随损伤尺寸增大而变化的规律,为探究基于高阶模态的损伤反演奠定了基础。

Abstract

The cutoff property of higher order Lamb modes is a powerful tool for the detection of corrosion in large-area plate and shell structures. Investigation on the transmission characteristics of higher order Lamb modes at corrosion with different widths and depths provides a theoretical basis for optimizing the excitation mode and frequency. Based on finite element method and single mode excitation technology, the variation of the time of flight (ToF), the amplitude of transmitted wave and the deformation of waveform are analyzed, when the A1 mode slightly above its cutoff frequency encounters corrosion. This study lays a foundation for exploring the mechanism of damages inversion based on high-order mode Lamb waves.

关键词

Lamb波 / 高阶模态 / 截止特性 / 单一模态激励 / 腐蚀损伤

Key words

Lamb waves / higher order modes / cutoff property / single mode excitation / corrosion

引用本文

导出引用
陈飞宇1,2,罗志3,曹徐伟4. 高阶Lamb波模态在腐蚀损伤处的透射特性分析[J]. 振动与冲击, 2023, 42(1): 98-104
CHEN Feiyu1,2, LUO Zhi3, CAO Xuwei4. Transmission characteristics of high order Lamb wave modes at corrosion damages[J]. Journal of Vibration and Shock, 2023, 42(1): 98-104

参考文献

[1] Krautkrämer J, Krautkrämer H. Ultrasonic testing of materials[M]. New York: Springer-Verlag, 1983: 528-533.
[2] Nagata Y , Huang J , Achenbach J D , et al. Lamb wave tomography using laser-based ultrasonics[C]//22nd Annual Review of Progress in Quantitative Nondestructive Evaluation. Snowmass Village, Colorado, USA, Jul 31-Aug 4, 1994: 561-568.
[3] Pei J , Yousuf M I , Degertekin F L , et al. Lamb wave tomography and its application in pipe erosion/corrosion monitoring[J]. Research in Nondestructive Evaluation, 1996, 8(4): 189-197.
[4] Huthwaite P. Improving accuracy through density correction in guided wave tomography[J]. Proceedings of the Royal Society of London A-Mathematical Physical and Engineering Sciences, 2016, 472(2186): 20150832.
[5] Hutchins D A, Jansen D P, Edwards C Lamb-wave tomography using non-contact transduction[J]. Ultrasonics, 1993, 31(2): 97-103.
[6] Ho K S, Billson D R, Hutchins D A. Ultrasonic Lamb wave tomography using scanned EMATs and wavelet processing[J]. Nondestructive Testing and Evaluation, 2007, 22(1): 19-34.
[7] Malyarenko E V, Hinders M K. Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures[J]. Journal of the Acoustical Society of America, 2000, 108(4): 1631-1639.
[8] Leonard K R, Malyarenko E V, Hinders M K. Ultrasonic Lamb wave tomography[J]. Inverse Problems, 2002, 18(6): 1795-1808.
[9] Zhu W, Rose J L, Barshinger J N, et al. Ultrasonic guided wave NDT for hidden corrosion detection[J]. Research in Nondestructive Evaluation, 1998, 10(4): 205-225.
[10] Rose J L, Barshinger J N. Using ultrasonic guided wave mode cutoff for corrosion detection and classification[C]//Proceedings of the IEEE Ultrasonics Symposium. Sendai, Japan, Oct 5-Oct 8, 1998: 851-854.
[11] Silva M Z, Gouyon R, Lepoutre F. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis[J]. Ultrasonics, 2003, 41(4): 301-305.
[12] Belanger P. High order shear horizontal modes for minimum remnant thickness[J]. Ultrasonics, 2014, 54(4): 1078-1087.
[13] CAO X, ZENG L, LIN J, et al. A correlation-based approach to corrosion detection with Lamb wave mode cutoff[J]. Journal of Nondestructive Evaluation, 2019, 38(4): 1-16.
[14] Rose J L. Ultrasonic guided waves in solid media[M]. New York: Cambridge University Press, 2014: 104-106.
[15] Auld B A. Acoustic fields and waves in solids, volume 2[M]. 2nd edition. Malabar, Florida: R. E. Krieger, 1990: 74-76.
[16] Hollanda S D , Chimenti D E . Air-coupled acoustic imaging with zero-group-velocity Lamb modes[J]. Applied Physics Letters, 2003, 83(13): 2704-2706.
[17] Drozdz M , Skelton E , Craster R V , et al. Modeling bulk and guided waves in unbounded elastic media using absorbing layers in commercial finite element packages[C]//34th Annual Review of Progress in Quantitative Nondestructive Evaluation. Golden, Colorado, USA, Jul 22-Jul 27, 2007: 87-94.
[18] 吴斌, 张也弛, 郑阳, 等. 超声导波有限元仿真中吸收边界设置及参数[J]. 北京工业大学学报, 2013, 39(12): 1777-1783.
WU B, ZHANG Y, ZHENG Y, et al. Modeling and parameters of absorbing boundary for ultrasonic-guided wave in FE simulation[J]. Journal of Beijing University of Technology, 2013, 39(12): 1777-1783 (in Chinese).
[19] Torvik J. Reflection of wave trains in semi-infinite plates[J]. Journal of the Acoustical Society of America, 1967, 41(2): 346-353.
[20] Alleyne D N. The nondestructive testing of plates using ultrasonic Lamb waves[D]. London: Imperial College, 1991: 76-77.
[21] Pavlakovic B N. Leaky guided ultrasonic waves in NDT[D]. London: Imperial College, 1998: 153-155.
[22] Giurgiutiu V. Structural health monitoring with piezoelectric wafer active sensors[M]. New York: Academic Press, 2007: 204-206.
[23] Freund R J, Mohr D, Wilson W J. Statistical Methods, Third Edition[M].  2010.

PDF(2813 KB)

Accesses

Citation

Detail

段落导航
相关文章

/