轴向运动形状记忆合金层合梁的参强联合共振

郝颖1,2,李哲1,2,胡宇达1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 1-7.

PDF(1355 KB)
PDF(1355 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 1-7.
论文

轴向运动形状记忆合金层合梁的参强联合共振

  • 郝颖1,2,李哲1,2,胡宇达1,2
作者信息 +

The resonance of parametric vibration with forced vibration of the axially moving shape memory alloy laminated beam

  • HAO Ying1,2,LI Zhe1,2,HU Yuda1,2
Author information +
文章历史 +

摘要

本文研究了轴向变速运动形状记忆合金(shape memory alloy,SMA)层合梁在简谐激励下的参强联合共振问题。基于SMA的Falk多项式本构模型,结合Timoshenko梁理论推导了轴向运动SMA层合梁的非线性振动方程。利用伽辽金积分法对其进行时间变量和空间变量的离散,用多尺度法以及坐标变换的方法推导系统参强联合共振的幅频响应方程。通过算例分析,得到不同物理参数变化时的幅频响应曲线图和振幅-参数曲线图,分析了轴向速度、温度及强迫激励对系统参强联合共振特性的影响。结果表明系统呈现典型的非线性振动特征和复杂的动力学行为。

Abstract

In this paper, the resonance of parametric vibration with forced vibration of the axially variable-velocity moving SMA (Shape Memory Alloy) laminated beam under harmonic excitation is investigated. Based on the Falk polynomial constitutive model of SMA, the nonlinear vibration equation of the axially moving SMA laminated beam is derived by combining Timoshenko beam theory. The time and space variables of the equation are discretized by using Galerkin integral method, then the amplitude-frequency response equation of resonance by the combined parametric and forced excitations is derived by multiscale method and coordinate transformation method. According to example analysis, the amplitude-frequency response curves and amplitude-parameter curves of different physical parameters are obtained and the effect of axial velocity, temperature and forced excitations on the resonance characteristics are analyzed. The results reveal that the system exhibits typical nonlinear vibration characteristics and complex dynamic behavior.

关键词

轴向变速运动 / SMA层合梁 / 参强联合共振 / 多尺度法

Key words

Axially variable moving / laminated Shape Memory Alloy beam / the resonances of parametric vibration with forced vibration / multi-scale method

引用本文

导出引用
郝颖1,2,李哲1,2,胡宇达1,2. 轴向运动形状记忆合金层合梁的参强联合共振[J]. 振动与冲击, 2023, 42(10): 1-7
HAO Ying1,2,LI Zhe1,2,HU Yuda1,2. The resonance of parametric vibration with forced vibration of the axially moving shape memory alloy laminated beam[J]. Journal of Vibration and Shock, 2023, 42(10): 1-7

参考文献

[1]. Mirzaeifar, R., R. DesRoches and A. Yavari, A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs[J]. International Journal of Solids and Structures, 2011, 48(3): 611 - 624.
[2]. 邵兵, 任勇生. SMA纤维混杂层合梁的振动分析. 工程力学, 2003, 20(04): 183-187.
Shao Bing, Ren Yongsheng. Analysis of free vibrations of Shape Memory Alloy hybrid composite beams. Engineering Mechanics, 2003, 20(04): 183-187.
 [3]. 邵兵, 任勇生. SMA纤维复合材料梁振动半主动控制. 力学与实践, 2004(06): 16-19.
Shao Bing, Ren Yongsheng. The semi-active control of Shape Memory Alloy composite beam, Mechanics in Engineering, 2004(06): 16-19.
 [4]. 任勇生, 刘廷瑞, 杨树莲, 王晓辉. 形状记忆合金混杂复合材料薄壁梁主动变形模型[J]. 固体力学学报, 2010, 31(03):228-236.
Ren Yongsheng, Liu Tingrui, Yang Shulian, Wang Xiaohui. Active deformation models of SMA fiber hybrid twin-walled laminated beams, Chinese Journal of Solid Mechanics, 2010, 31(03):228-236.
 [5]. Collet, M., E. Foltête , C. Lexcellent, Analysis of the behavior of a Shape Memory Alloy beam under dynamical loading. European Journal of Mechanics A/solids, 2001, 20(4):615-630.
 [6]. DE MATOS JUNIOR O D , Donadon M V , Castro S G P . Aeroelastic behavior of stiffened composite laminated panel with embedded SMA wire using the hierarchical Rayleigh–Ritz method[J]. Composite Structures, 2017, 181(dec.):26-45.
 [7]. Nassiri-Monfared A , Baghani M , Zakerzadeh M R , et al. Dynamic analysis of a shape memory alloy beam with pseudoelastic behavior[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9):1045389X1775426.
 [8]. Nassiri-Monfared A , Baghani M , Zakerzadeh M R , et al. Developing a semi-analytical model for thermomechanical response of SMA laminated beams, considering SMA asymmetric behavior. Meccanica, 2018. 53(4-5): 957-971.
 [9].Akhavan-Rad B , Kheirikhah M M . Static analysis of sandwich plates embedded with shape memory alloy wires using active strain energy tuning method[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2019, 41(3).
[10]. Zhang X , Gao M , Hao Y . The 1/3rd subharmonic and 3rd superharmonic resonance of a shape memory alloy (SMA) laminated beam[J]. Journal of Theoretical and Applied Mechanics, 2020, 59(1): 27-41.
[11]. 李彪, 唐有绮, 丁虎,等. 轴向运动黏弹性Timoshenko梁横向非线性强受迫振动[J]. 振动与冲击, 2012, 31(13): 142-146.
Li Biao, Tang Youqi, Ding Hu, et al. Nonlinear vibrations of axially moving viscoelastic Timoshenko beams under strong external excitation. Journal of Vibration and Shock, 2012, 31(13): 142-146.
[12]. 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学. 物理学报, 2013(20): 1-7.
Ding Hu, Yan QiaoYun, Chen Liqun. Chaotic dynamics in the forced nonlinear vibration of an axially accelerating viscoelastic beam. Acta Physica Sinica, 2013(20): 1-7.
[13]. Ding H , Tan X , Zhang G C , et al. Equilibrium bifurcation of high-speed axially moving Timoshenko beams[J]. Acta Mechanica, 2016, 227(10): 3001-3014.
[14]. 王杰, 胡宇达. 磁场中轴向运动载流梁磁弹性主共振分析. 振动与冲击, 2016, 35(23): 65-73.
Wan Jie, Hu Yuda. Magneto-elastic primary resonance of axially moving current-carrying beams in magnetic fieid. Journal of Vibration and Shock, 2016, 35(23): 65-73.
[15]. Wang J , Hu Y , Su Y , et al. Magneto-elastic internal resonance of an axially moving conductive beam in the magnetic field[J]. Journal of Theoretical and Applied Mechanics, 2019, 57(1):179-191.
[16]. Tang, Y, Z. Ma, Nonlinear vibration of axially moving beams with internal resonance, speed-dependent tension, and tension-dependent speed. Nonlinear Dynamics, 2019. 98(4): 2475-2490.
[17]. Shao M , J Wu, Y Wang, et al. Nonlinear Parametric Vibration and Chaotic Behaviors of an Axially Accelerating Moving Membrane[J]. Shock and Vibration, 2019, (PT.2):1-11
[18]. Sahoo, B., L.N. Panda , G. Pohit, Two-frequency parametric excitation and internal resonance of a moving viscoelastic beam. Nonlinear Dynamics, 2015. 82(4): 1721-1742.
[19].  Paiva A , Savi M A . An overview of constitutive models for shape memory alloys[J]. Mathematical Problems in Engineering, 2006, 2006(1):39-62
[20]. 郝颖, 胡宇达, 张夏辉. 轴向运动SMA层合梁的主共振分析[J]. 应用力学学报, 2019, 36(5): 1138-1143
Hao Ying, Hu Yuda, Zhang Xiahui. Primary resonance analysis of axially moving SMA laminated beam. Chinese Journal of Applied Mechanics, 2019, 36(5): 1138-1143.
[21].颜婷, 杨天智, 丁虎, 陈立群. 变速运动可压缩夹层梁稳定性的直接多尺度分析[J]. 振动与冲击, 2019, 38(04): 40-44.
Yan Ting, Yang Tianzhi, Ding Hu, Chen Liqun. Direrct multiscale anslysis of the stability of an axially moving compressible sandwich beam with time-dependent velocity. Journal of Vibration and Shock, 2019, 38(04): 40-44.

PDF(1355 KB)

Accesses

Citation

Detail

段落导航
相关文章

/