飞机撞击安全壳中航油爆炸耦联分析模型及影响研究

李建波1,2,牛燕如1,2,梅润雨1,2,孙运轮3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 112-120.

PDF(2486 KB)
PDF(2486 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 112-120.
论文

飞机撞击安全壳中航油爆炸耦联分析模型及影响研究

  • 李建波1,2,牛燕如1,2,梅润雨1,2,孙运轮3
作者信息 +

Study on coupling analysis model and influence of aviation oil explosion for aircraft impact containment

  • LI Jianbo1,2,NIU Yanru1,2,MEI Runyu1,2,SUN Yunlun3
Author information +
文章历史 +

摘要

飞机撞击安全壳事件中,撞击载荷和航油爆炸载荷是需要耦合考虑的两种载荷。当前主要关注于单一的飞机撞击载荷作用,缺乏撞击-爆炸载荷耦合作用的分析和影响比较。为研究耦合作用下安全壳结构的动力响应差异,并提出可行的数值模型,本文基于飞机和安全壳细致的动力数值模型进行了全过程的耦合分析。首先以蒸气云爆炸的The Netherlands Organization(TNO)多能法模型来定量表示航油爆炸载荷;并基于钢筋混凝土板抗爆、抗弹体撞击的数值模型试验,验证了Riedel-Hiermaier-Thoma(RHT)本构模型在不同载荷形式下的通用性;最后采用精细化建模的A340-300大型商用飞机和某四代核反应堆安全壳模型,对比分析了单一载荷作用和撞击-爆炸耦合载荷作用下安全壳的位移时程和损伤分布规律。研究结果表明,对安全壳进行飞机撞击评价时进行撞击-爆炸耦合载荷作用的分析是十分必要的。基于文中模型,耦合载荷作用下的安全壳峰值位移响应,比考虑单一载荷作用的位移增加了约27 %。除此之外,安全壳的局部损伤破坏也有较大幅度的变化,与单一撞击载荷作用相比,耦合作用下损伤面积在机身撞击区域增加约142 %,在引擎撞击区域增加约72.8 %,且引擎撞击局部区域的损伤程度大幅增加。

Abstract

In the event of aircraft impacting on a containment structure, the coupling effect of the impact load and the explosion load caused by the aviation oil needs to be considered. Recent studies mainly focus on the effect of single impact load, however few analysis and comparisons of the coupling effect are presented. In order to study the dynamic response of containment structure subjected to the coupling effect and propose a feasible numerical model, a coupling analysis of the whole accident process is carried out based on the refined dynamic numerical model of the aircraft and the containment. The analysis firstly uses the TNO (The Netherlands Organization) multi-energy method for vapor cloud explosion to quantitatively represent the aviation oil explosion load. Then, the applicability of RHT constitutive model under different load types is verified based on the numerical model test of reinforced concrete slab anti-explosion and anti-missile impact. Finally, the refined numerical models of the A340-300 large commercial aircraft and the fourth-generation nuclear reactor containment are used to compare and analyze the displacement time history and damage distribution of the containment under the single load and the coupled impact-explosion load. The results show that it is very important to analyze the effect of the coupled impact-explosion load in the safety evaluation when the containment is impacted by an aircraft. Based on the model of this paper, the peak displacement under the coupled load is about 27 % higher than that under the single load. Besides, the local damage characteristics of the containment also have a relatively large change. Compared with the single impact load, the coupled load increases the damage area by about 142 % in the fuselage impact area and by about 72.8 % in the engine impact area, and the degree of damage in the local area where the engine impacts is greatly increased.

关键词

飞机撞击 / 航油爆炸 / 安全壳 / TNO多能法

Key words

aircraft impact / aviation oil explosion / containment / TNO multi-energy method

引用本文

导出引用
李建波1,2,牛燕如1,2,梅润雨1,2,孙运轮3. 飞机撞击安全壳中航油爆炸耦联分析模型及影响研究[J]. 振动与冲击, 2023, 42(10): 112-120
LI Jianbo1,2,NIU Yanru1,2,MEI Runyu1,2,SUN Yunlun3. Study on coupling analysis model and influence of aviation oil explosion for aircraft impact containment[J]. Journal of Vibration and Shock, 2023, 42(10): 112-120

参考文献

[1] 李亮,潘蓉,骆鹏,路雨.我国核电厂设计中考虑的自然灾害综述与建议[J].震灾防御技术,2021,16(02):398-403.
 LI Liang, PAN Rong, et al. Review and suggestions on natural disaster prevention for nuclear power plants in China[J]. Technology for Earthquake Disaster Prevention, 2021,16(02):398-403.
[2] United States Nuclear Regulatory Commission. Aircraft impact assessment: 10 CFR 50. 150[S]. Washington DC: United States Nuclear Regulatory Commission, 2009.
[3]  核动力厂设计安全规定:HAF 102-2016[S]. 北京:国家核安全局,2016.
  Safety regulations for design of nuclear power plant: HAF 102-2016 [S]. Beijing: National Nuclear Safety Administration, 2016.
[4]  Riera Jorge D.. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design,1968,8(4):415-426
[5]  T. Sugano, H. Tsubota, Y. Kasai, N. Koshika, S. Orui, W. A. von Riesemann, D. C. Bickel, M. B. Parks, Fullscale aircraft impact test for evaluation of impact force, Nuclear Engineering and Design, 140 (1993) 373-385.
[6]  孙运轮,王友刚,罗胜,王菲,刘晶波.飞机机身撞击核工程钢筋混凝土墙体模型试验研究[J].振动与冲击,2021,40(24):41-49+64.
 SUN Yun-lun, WANG You-gang, et al. Experimental studies on the aircraft fuselage impacting a reinforced concrete wall model in nuclear engineering[J]. Journal of Vibration and Shock, 2021,40(24):41-49+64.
[7]  刘晶波, 韩鹏飞, 郑文凯, 等.商用飞机撞击核电站屏蔽厂房数值模拟[J]. 爆炸与冲击, 2016, 36(03): 391-399.
  LIU J B, HAN P F, ZHENG W K, et al. Numerical investigation of shield building for nuclear power plant subjected to commercial aircraft impact [J]. Explosion and Shock Waves, 2016, 36(03): 391-399.
[8]  ZHANG T, WU H, FANG Q, et al. Numerical simulations of nuclear power plant containment subjected to aircraft impact[J]. Nuclear Engineering and Design,2017,320(15):207-221.
[9]  Jianbo Li,Runyu Mei,Yougang Wang,Gao Lin,Rong Pan. Vibration analysis of third generation nuclear power plant considering soil‐structure‐interaction effect under the impact of large commercial aircraft[J]. The Structural Design of Tall and Special Buildings,2020,29(16):e1796
[10]  PANDEY A K, KUMAR R, PAUL D K, et al. Non-linear response of reinforced concrete containment structure under blast loading[J]. Nuclear Engineering and Design, 2006,236(9):993-1002.
[11]  赵春风, 王强, 王静峰, 等. 近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能[J]. 高压物理学报, 2019, 33(02): 143-155.
  ZHAO C F, WANG Q, WANG J F, et al. Blast resistance of containment dome reinforced concrete slab in NPP under close-in explosion[J]. Chinese Journal of High Pressure Physics, 2019, 33(02): 143-155.
[12]  刘云飞,王天运,贺锋,李振明.核反应堆预应力钢筋混凝土安全壳内爆炸数值分析[J]. 工程力学, 2007(08):168-172+162.
  LIU Y F, WANG T Y, HE F, et al. Numerical simulation for pre-stressed concrete containment under internal explosive loading[J]. Engineering Mechanics, 2007(08):168-172+162.
[13]   Senpei Wang, Zhan Li, Qin Fang, et al. Performance of utility tunnels under gas explosion loads[J]. Tunnelling and Underground Space Technology, 2021, 109(03): 103762.
[14]   刘晓蓬,陈健云,徐强.混凝土重力坝爆炸荷载数值分析及抗爆性能研究[J].计算力学学报,2018,35(02):174-181.
 LIU Xiao-peng, CHEN Jian-yun, XU Qiang. Numerical analysis and anti-knock property study of concrete dam subjected to underwater explosion[J]. Chinese Journal of Computational Mecanics,2018,35(02):174-181.
[15]  黄涛,张涛,董占发,吴昊,方秦.大型商用飞机撞击核安全壳的动力响应分析[J].振动与冲击,2018,37(20):8-14.
 HUANG Tao, ZHANG Tao, et al. An analysis of the dynamic response of nuclear containment under the impact of a large commercial aircraft[J]. Journal of Vibration and Shock, 2018,37(20):8-14.
[16]  Zhenguo Tu,Yong Lu. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering,2007,36(1):132-146.
[17]  王成,武际可.从爆炸力学的观点分析世贸大厦塔楼倒塌的过程[J].力学与实践,2001(06):73-75.
 WANG C, WU J K. Analysis of the collapse process of the World Trade Center tower from the viewpoint of explosive mechanics[J]. Mechanics and Practice, 2001(06): 73-75.
[18]  KOMAROV A A, GROMOV N V, KOROLCHENKO O N. Ensuring Blast Resistance of Critically Important Buildings and Constructions in Case of Air Crash[J]. IOP conference series. Materials Science and Engineering, 2021,1066(1): 12005.
[19]  Zhan Li, Li Chen, Haichun Yan, Qin Fang, Yadong Zhang, Hengbo Xiang, Yang Liu, Senpei Wang. Gas explosions of methane-air mixtures in a large-scale tube[J]. Fuel,2021,285(1):119239.
[20]  A.C.van den Berg.. The multi-energy method: A framework for vapour cloud explosion blast prediction [J]. Journal of Hazardous Materials,1985,12(1):1-10.
[21]  Aminu Ismaila,Rafiziana Md Kasmani,Ahmad Termizi Ramli. Numerical evaluation of the severity of consequences of external fire and explosion incident at a nuclear power plant[J]. Nuclear Engineering and Design,2019,355(15):110314.
[22]  樊玮鹏. 高闪点航空煤油爆燃与抑爆剂释放动力学特性研究[D].哈尔滨工程大学.
 FAN Wei-peng. Study on the dynamic characteristics of high flash point aviation kerosene deflagration and deflagration suppression agent release[D]. Harbin Engineering University.
[23]  张若棋,丁育青,汤文辉,冉宪文.混凝土HJC、RHT本构模型的失效强度参数[J].高压物理学报,2011,25(01):15-22.
 ZHANG Ruo-qi, DING Yu-qing et al. The failure strength parameters of HJC and RHT concrete constitutive models[J]. Chinese Journal of High Pressure Physics, 2011, 25(01): 15-22.
[24]  B. R. Ellis, F. Tsui. Testing and analysis of reinforced concrete panels subjected to explosive and static loading.[J]. Proceedings of the Institution of Civil Engineers - Structures and Buildings,1997,122(3):293-304.
[25]  M. Beak, S. A. Colwell, D. Crowhurst, B. R. Ellis. The behavior of masonry and concrete panels under explosion and static loading[R]. Bucknalls Lane, Watford: Building Research Establishment, 1994.
[26]  马天宝,武珺,宁建国.弹体高速侵彻钢筋混凝土的实验与数值模拟研究[J].爆炸与冲击,2019,39(10):83-93.
 MA Tian-bao, Wu Jun, Ning Jian-guo. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete[J]. Explosion and Shock Waves, 2019, 39(10): 83-93.
[27]  王友刚, 孙运轮, 李建波, 等. 基于土-结构相互作用的核电厂房抗飞机撞击耦合分析与模型验证[J]. 振动与冲击, 2022,41(06): 115-122.
 WANG You-gang, SUN Yun-lun, LI Jian-bo, et al. Coupling analysis and model verification of anti aircraft impact on a nuclear power plant structure considerding the soil-structure interaction[J]. Journal of Vibration and Shock, 2022,41(06): 115-122.
[28]  梅润雨. 核电厂房抗大型商用飞机撞击的计算模型与动力响应性能研究[D].大连理工大学,2020.
 MEI Run-yu. Research on refined interaction model and dynamic performance of nuclear power plant against large commercial aircraft impact[D]. Dalian University of Technology, 2020.
[29] 李建波,杨凯,梅润雨.基于能量守恒的商用大飞机Riera撞击曲线速度模型研究与改进[J].振动与冲击,2020,39(22):143-149.
 LI Jian-bo, YANG Kai, MEI Run-yu. Improved velocity model in the Riera impact loading formula for commercial large aircrafts on the basis of energy conservation principle[J]. Journal of Vibration and Shock,2020,39(22):143-149.
[30]  孔建伟. 地震和冲击荷载作用下CPR1000核电厂安全壳破坏机理试验研究[D].大连理工大学,2017.
 KONG Jian-wei. Experimental study on the failure mechanism of concrete containment vessel(CCV) for CPR1000 nuclear power plant subjected to earthquakes and impact loads[D]. Dalian University of Technology, 2017.

PDF(2486 KB)

Accesses

Citation

Detail

段落导航
相关文章

/