改进SVD算法的转子系统轴心轨迹快速提纯研究

苏紫娜1,马军1,2,王晓东1,2,熊新1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 144-154.

PDF(5548 KB)
PDF(5548 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 144-154.
论文

改进SVD算法的转子系统轴心轨迹快速提纯研究

  • 苏紫娜1,马军1,2,王晓东1,2,熊新1,2
作者信息 +

Rapid purification of rotor system axis trajectory based on improved SVD algorithm

  • SU Zina1,MA Jun1,2,WANG Xiaodong1,2,XIONG Xin1,2
Author information +
文章历史 +

摘要

为实现转子系统轴心轨迹的快速提纯,提出一种改进的奇异值分解(Improved Singular Value Decomposition,ISVD)算法。首先,构建一种奇异值差异比(Singular Value Difference Ratio,SVDR)的评判指标来确定矩阵行数,对Hankel矩阵的结构进行优化;其次,利用奇异值与频率的数量关系筛选有效分量,对有效分量进行重构得到特征信号;然后,将降噪提纯后的特征信号合成轴心轨迹,实现轴心轨迹的提纯;最后,利用仿真和实测信号对所提方法进行分析。实验结果表明,与最大维数法相比,在SVDR确定的矩阵结构下,奇异值分解的降噪性能保持不变,但分解的时间缩短了90.18%,提高了计算效率。

Abstract

An improved singular value decomposition (ISVD) algorithm is proposed to achieve rapid purification of rotor center trajectory. Firstly, a singular value difference ratio (SVDR) evaluation index is constructed to determine the number of matrix rows, and the structure of Hankel matrix is optimized. Secondly, the quantitative relationship between singular value and frequency is used to screen the effective components, and the effective components are reconstructed to obtain the characteristic signals. Then, the characteristic signals after denoising and purification are combined into the shaft center trajectory to achieve the purification of the shaft center trajectory. Finally, the proposed method is analyzed by simulation and experiment. The experimental results show that compared with the matrix structure determined by the maximum dimension method, the calculation time of the matrix structure determined by SVDR criterion is reduced by 90.18%. Its computational efficiency has been improved.

关键词

奇异值分解 / 奇异值差异比 / 降噪提纯 / 轴心轨迹

Key words

singular value decomposition / singular value difference ratio / noise reduction and purification / axis trajectory

引用本文

导出引用
苏紫娜1,马军1,2,王晓东1,2,熊新1,2. 改进SVD算法的转子系统轴心轨迹快速提纯研究[J]. 振动与冲击, 2023, 42(10): 144-154
SU Zina1,MA Jun1,2,WANG Xiaodong1,2,XIONG Xin1,2. Rapid purification of rotor system axis trajectory based on improved SVD algorithm[J]. Journal of Vibration and Shock, 2023, 42(10): 144-154

参考文献

[1] 郭明军,李伟光,杨期江,等. 深度卷积神经网络在滑动轴承转子轴心轨迹识别中的应用[J].振动与冲击, 2021, 40(3): 233-239+283.
Guo Ming-Jun, Li Wei-guang, Yang Qi-jiang, et al.Application of deep convolution neural network in identification of journal bearing rotor center orbit [J] Journal of vibration and shock, 2021, 40(3): 233-239+283.
[2] 李伟光,郭明军,杨期江,等. 改进PCA算法及其在转子特征提取中的应用[J].振动、测试与诊断,2020, 40(3): 555-562+628-629.
Li Wei-guang, Guo Ming-jun, Yang Qi-jiang, et al. Improved PCA Algorithm and Its Application in Rotor Feature Extraction [J].Journal of Vibration, Measurement & Diagnosis, 2020, 40(3): 555-562+628-629.
[3] 郭明军,李伟光,杨期江,等. 基于稀疏算法的大型转子多工况轴心轨迹提纯[J]. 华南理工大学学报(自然科学版),2020,48(4):45-53.
Guo Ming-jun, Li Wei-guang, Yang-Qijiang, et al. Sparse algorithm-based purification of multi-Condition axis trajectory of large rotor[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 38(4): 199-205.
[4] 孟雅俊,黄传金,李凌均,等. 基于BEMD的二元滤波器及其在转子轴心轨迹提纯中的应用 [J]. 振动与冲击,2019, 38(1): 118-122.
Meng Ya-jun, Huang Chuan-jin, Li Ling-jun, et al. Bivariate Filter based on BEMD and its application to purify rotor shaft center trajectory [J]. Journal of vibration and shock, 2019, 38(1):118-122.
[5] GUO M J, LI W G, YANG Q J, et al. Amplitude filtering characteristics of singular value decomposition and its application to fault diagnosis of rotating machinery[J]. Measurement, 2020,154:1-11.
[6] ZHAO X Z, YE B Y. Similarity of signal processing effect between Hankel matrix-based SVD and wavelet transform and its mechanism analysis[J] Mechanical Systems and Signal Processing, 2009, 23(4): 1062-1075.
[7] 赵学智,叶邦彦,陈统坚. 正弦信号非零奇异值的变化规律研究[J]. 振动、测试与诊断,2020, 40(1): 62-69+203.
Zhao Xue-zhi, Ye Bang-yan, Chen Tong-jian. Study on Variation Law of Non-zero Singular Values of Sinusoidal Signal[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(1):62-69+203.
[8] ZHAO M, JIA X D. A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery[J]. Mechanical Systems and Signal Processing, 2017, 94: 129-147.
[9] CHEN Y J, LIANG X H, ZUO M J. An improved singular value decomposition-based method for gear tooth crack detection and severity assessment[J]. Journal of Sound and Vibration, 2020, 468:1-15.
[10] MIAO Y H, ZHAO B Y, YI Y G, et al. Application of improved reweighted singular value decomposition for gearbox fault diagnosis based on built-in encoder information[J]. Measurement, 2021, 168: 1-13.
[11] MIAO Y H, ZHAO M, LIN J. Periodicity-impulsiveness spectrum based on singular value negentropy and its application for identification of optimal frequency band[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3127-3138.
[12] 赵学智,邵啟鹏,叶邦彦,等. 奇异值分解中考虑频率因素的矩阵维数[J]. 机械工程学报,2019, 55(16): 7-16.
Zhao Xue-zhi, Shao Qi-peng, Ye Bang-yan, et al. Matrix dimension considering frequency factor in singular value decomposition[J]. Journal of Mechanical Engineering, 2019, 55(16): 7-16.
[13] LANG X, STEVEN C, PAOLO P. Rolling element bearing diagnosis based on singular value decomposition and composite squared envelope spectrum[J]. Mechanical Systems and Signal Processing, 2021,148: 1-25.
[14] 张景润,李伟光,李振,等. 基于奇异值差分谱理论的大型转子轴心轨迹提纯[J]. 振动与冲击,2019, 38(4): 199-205.
Zhang Jing-run, Li Wei-guang, Li Zhen, et al. Purification for a large rotor axis’s orbit based on the difference spectrum theory of singular value[J]. Journal of vibration and shock, 2019, 38(4):199-205.
[15] QIAO Z J, PAN Z R . SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient[J]. Measurement Science and Technology, 2015, 26(8): 15-30.
[16] YAN H, CHEN G, HUNG, J M, et al. Fault diagnosis on railway vehicle bearing based on fast extended singular value decomposition packet [J], Measurement, 2020, 152: 1-20.
[17] 李华,刘韬,伍星,等. 相关奇异值比的SVD在轴承故障诊断中的应用[J]. 机械工程学报,2021, 57(21): 138-149.
Li Hua, Liu Tao, Wu Xing, et al. Application of SVD based on Correlation Singular Value Ratio in Bearing Fault Diagnosis [J]. Journal of Mechanical Engineering, 2021, 57(21): 138-149.
[18] 杨期江,赵学智,汤雅连,等. 非零奇异值数量的理论分析及其在滑动轴承—转子振动特征提取应用[J].振动与冲击,2019, 38(15): 17-26.
Yang Qi-jiang, Zhao Xue-zhi, Tang Ya-lian, et al. Theoretical analysis for number of non-zero singular values and its application in vibration feature extraction of a sliding bearing-rotor system[J]. Journal of vibration and shock, 2019, 38(15): 17-26.
[19] Zhao X , Ye B Y. Singular value decomposition packet and its application to extraction of weak fault feature[J]. Mechanical Systems and Signal Processing, 2016, 70-71: 73-86.

PDF(5548 KB)

Accesses

Citation

Detail

段落导航
相关文章

/