压电执行器改进Bouc-Wen模型及其定位补偿控制研究

周民瑞1,周振华1,2,刘鑫1,2,曹太山1,2,李战慧1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 155-164.

PDF(2455 KB)
PDF(2455 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 155-164.
论文

压电执行器改进Bouc-Wen模型及其定位补偿控制研究

  • 周民瑞1,周振华1,2,刘鑫1,2,曹太山1,2,李战慧1,2
作者信息 +

Improved Bouc-Wen model of piezoelectric actuator and its positioning compensation control study

  • ZHOU Minrui1,ZHOU Zhenhua1,2,LIU Xin1,2,CAO Taishan1,2,LI Zhanhui1,2
Author information +
文章历史 +

摘要

针对多数迟滞模型无法描述压电陶瓷执行器(piezoelectric actuator ,PEA)的非对称、率相关迟滞非线性,提出一种改进Bouc-Wen(improved Bouc–Wen ,IBW)模型并基于提出的IBW模型对其补偿控制进行实验研究。首先,基于传统Bouc-Wen  (classical Bouc–Wen,CBW)迟滞模型引入两项非对称项并引入二阶IIR滤波器以精确描述压电陶瓷执行器的迟滞非线性,进一步分析了模型参数值与频率变化规律并修正率相关参数。然后,搭建基于NI CompactRIO测控系统压电陶瓷执行器精密定位实验平台,对提出的IBW模型进行了实验验证并基于IBW模型对其补偿控制进行了实验研究。实验结果表明:IBW模型性能显著优于传统Bouc-Wen(CBW)模型和增强型Bouc-Wen(enhanced Bouc–Wen ,EBW)模型,对于激励频率10-100Hz多频正弦信号,IBW模型均方根误差相较于CBW模型和EBW模型分别下降了82.07%和62.10%,实验中压电陶瓷执行器实测最大输出位移6.15μm,基于IBW模型所提出复合补偿控制均方根误差为0.039μm,仅为最大输出位移的0.64%,最大跟踪误差仅为0.153μm。若忽略测量噪声,定位误差接近于零,说明所提出的IBW模型及其补偿控制算法有助于实现压电陶瓷执行器的高速、宽频超精密定位及主动振动控制。

Abstract

To address the asymmetric and frequency-dependent hysteresis nonlinearity of piezoelectric actuator (PEA) that can not be described by most hysteresis models, an improved Bouc-Wen (IBW) model is proposed and its compensation control is experimentally investigated based on the proposed IBW model. Firstly, based on the classical Bouc-Wen (CBW) hysteresis model, two asymmetric terms and a second-order IIR filter are introduced to accurately describe the hysteresis nonlinearity of the PEA, and the model parameters are further analyzed for the frequency variation law and the parameters are corrected to frequency-dependent. Then, based on NI CompactRIO measurement and control system, piezoelectric actuator precision positioning experimental platform is set up, and the proposed IBW model is experimentally verified and its compensation control is further experimentally studied based on the IBW model. The experimental results show that the IBW model performs significantly better than the CBW model and the enhanced Bouc-Wen (EBW) model. Compared with the CBW model and EBW model, the root mean square error of the IBW model decreases by 82.07% and 62.10% for multi-frequency sinusoidal signals with excitation frequencies of 10-100Hz, respectively. The maximum output displacement measured in the experiment is 6.15μm, and the root mean square error of the proposed composite compensation control based on the IBW model is 0.039μm, which is only 0.64% of the maximum output displacement. The maximum tracking error is only 0.153μm, and the positioning error is close to zero if the measurement noise is ignored. It is shown that the proposed IBW model and its compensation control algorithm can help realize high-speed, wide-frequency ultra-precision positioning and active vibration control of PEA.

关键词

压电陶瓷执行器 / 动态非对称迟滞 / 改进Bouc-Wen模型 / 迟滞补偿控制

Key words

piezoelectric actuator / dynamic asymmetric hysteresis / improved Bouc-Wen model / hysteresis compensation control.

引用本文

导出引用
周民瑞1,周振华1,2,刘鑫1,2,曹太山1,2,李战慧1,2. 压电执行器改进Bouc-Wen模型及其定位补偿控制研究[J]. 振动与冲击, 2023, 42(10): 155-164
ZHOU Minrui1,ZHOU Zhenhua1,2,LIU Xin1,2,CAO Taishan1,2,LI Zhanhui1,2. Improved Bouc-Wen model of piezoelectric actuator and its positioning compensation control study[J]. Journal of Vibration and Shock, 2023, 42(10): 155-164

参考文献

[1]   Zhang X, Tan Y. A hybrid model for rate-dependent hysteresis in piezoelectric actuators[J]. Sensors & Actuators A Physical, 2010, 157(01):54-60.
[2]   Wang G, Chen G, Bai F. High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation[J]. Microsystem Technologies,
2015, 22 (10): 1-11.
[3] 袁刚, 李世栋, 王代华. 一种压电陶瓷叠堆执行器刚度测量方法研究[J]. 仪器仪表学报,2015, 36 (03): 568-573.
YUAN Gang, LI Shi-dong, WANG Dai-hua. A stiffness measurement method for piezoelectric ceramic stack actuator[J]. Chinese Journal of Scientific Instrument,2015, 36 (03): 568-573.
[4] Polit S, Dong J. Development of a high-bandwidth xy nanopositioning stage for high-rate micro-nanomanufacturing[J]. IEEE/ASME Transactions on Mechatronics,2011, 16 (04): 724-733.
[5] Armin M, Roy P N, Das S K.A survey on modelling and compensation for hysteresis in high speed nanopositioning of AFMs: observation and future recommendation[J]. International Journal of Automation,2020, 17 (05): 479-501.
[6]  Davoodi A A, Izadi I, Ghaisary J. Design and implementation of a feedforward feedback controller for a piezoelectric actuator[C]. 2019 27th Iranian Conference on Electrical Engineering (ICEE),2019.
[7]   马小陆, 裘进浩, 季宏丽, 等. 基于压控电荷源和小波变换自适应算法的主-被动压电振动控制[J].振动与冲击,2012, 31 (11): 22-25+31.
MA Xiao-lu, QIU Jin-hai, JI Hong-li, et al. Active-passive piezoelectric vibration control method based on a voltage-controlled charge source and a wavelet transformation adaptive algorithm [J]. Journal of Vibration and Shock, 2012, 31 (11): 22-25+31.
[8]  Yu S, Xie M, Wu H, et al.Composite proportional-integral sliding mode control with feedforward control for cell puncture mechanism with piezoelectric actuation[J]. ISA Transactions,2020.
[9]   范伟, 林瑜阳, 李钟慎. 压电陶瓷驱动器的迟滞特性 [J].光学 精密工程,2016, 24 (05): 1112-1117.
FAN Wei, LIN Yu-yang, LI Zhong-Shen. Hysteresis characteristics of piezoelectric ceramic actuators [J]. Optical and Precision Engineering,2016, 24 (05): 1112-1117.
[10] 胡佳明,朱晓锦,方昱斌,等.基于迟滞观测器的压电堆补偿控制[J]. 振动与冲击,2021,40(04):81-86+129.
HU Jia-ming, ZHU Xiao-jin, FANG Yu-bin, et al. Compensation control for piezoelectric stack based on a hysteretic observer[J]. Journal of Vibration and Shock,2021,40(04):81-86+129.
[11] Aguirre G, Janssens T, Brussel H V, et al. Asymmetric-hysteresis compensation in piezoelectric actuators[J]. Mechanical Systems Signal Processing,2012, 30: 218-231.
[12] 胡俊峰,何建康,杨明立. 压电式二维微定位平台的率相关迟滞建模[J].振动与冲击,2020,39(06):104-110+131.
HU Jun-feng, HE Jian-kang, YANG Ming-li. Rate-dependent modeling of a piezoelectric two-dimensional micro positioning stage[J]. Journal of Vibration and Shock 2020,39(06):104-110+131.
[13] 顾寒烈, 吴洪涛, 杨小龙, 等. 压电作动器非对称迟滞模型的建立和参数辨识[J].仪器仪表学报,2017, 38(04): 903-909.
GU Han-lie, WU Hong-tao, YANG Xiao-long, et al. Modeling and parameter identification of asymmetric hysteresis for piezoelectric actuator [J]. Chinese Journal of Scientific Instrument,2017, 38 (04): 903-909.
[14] 于志亮, 王岩, 曹开锐, 等. 压电陶瓷执行器迟滞补偿及复合控制[J].光学 精密工程,2017, 25 (08): 2113-2120.
YU Zhi-liang, WANG Yan, CAO Kai-rui, et al. Hysteresis compensation and composite control for piezoelectric actuator[J].Optical and Precision Engineering,2017, 25(08): 2113-2120.
[15] 陈辉, 谭永红, 周杏鹏, 等.压电陶瓷执行器的动态模型辨识与控制 [J].光学 精密工程,2012, 20 (01): 88-95.
CHEN Hui, TAN Yong-hong, ZHOU Xing-peng, et al. Identification and control of dynamic modeling for piezoelectric ceramic [J]. Optical and Precision Engineering, 2012, 20(01): 88-95.
[16]  李致富, 黄楠, 钟云, 等. 压电驱动器迟滞非线性的分数阶建模及实验验证[J].光学 精密工程,2020, 28 (05): 1124-1131.
LI Zhi-fu, HUANG Nan, ZHONG Yun, et al. Fractional order modeling and experimental verification of hysteresis nonlinearity in piezoelectric actuators[J]. Optical and Precision Engineering, 2020, 28(05): 1124-1131.
[17]  Qin H, Bu N, Chen W, et al. An Asymmetric hysteresis model and parameter identification method for piezoelectric actuator[J]. Mathematical Problems in Engineering,2014, 2014(01):1-14.
[18]  Hu J, Dong R, Tan Y. A new improved Bouc-Wen model of oiezoelectric ceramics actuators[C]. 40th China Control Conference,2021: 34-38.
[19] Li W, Chen X D, Li Z L. Inverse compensation for hysteresis in piezoelectric actuator using an asymmetric rate-dependent model[J]. The Review of scientific instruments,2013, 84 (11): 115003.
[20] Zhu W, Rui X T. Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc–Wen model[J]. Precision Engineering,2016, 43:299-307.
[21] Rakotondrabe M.Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonline-
-arity in piezoelectric actuators[J]. IEEE Transactions on Automation Science Engineering,2011, 8 (02): 428-431.
[22] Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of the Engineering Mechanics Division,1976, 102 (02): 249-263.
[23] Zhang Q, Dong Y, Peng Y, et al. Asymmetric Bouc–Wen hysteresis modeling and inverse compensation for piezoelectric actuator via a genetic algorithm–based particle swarm optimization identification algorithm[J]. Journal of Intelligent Material Systems Structures 2019, 30 (08): 1045389X1983136.
[24] Zablotskaya T Y. Analyzing the classical and extended Bouc-Wen model parameters[C]. 2020 2nd International Conference on Control Systems, Automation and Energy Efficiency (SUMMA),2020.
[25] Gan J Q, Zhang X M. An enhanced Bouc-Wen model for characterizing rate-dependent hysteresis of piezoelectric actuators[J]. The Review of scientific instruments,2019, 90 (01):115002.
[26] 王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程,2018, 26(10):9.
WANG Zhen-yan, JIA Gao-xin X. Asymmetric hysteresis modeling and internal mode control for piezoelectric actuators[J]. Optical and Precision Engineering,2018, 26(10): 2484-2492.
[27] 袁刚, 王代华, 李世栋. 大角度压电式快速控制反射镜[J]. 光学 精密工程,2015, 23(08): 2258-2264.
YUAN Gang, WANG Dai-hua, LI Shi-dong. Large angle piezoelectric fast control reflector[J]. Optical and Precision Engineering,2015, 23(08): 2258-2264.
[28] Qian F, Guo Z W, Xu S A, et al.Hysteresis neural network modeling and compensation of piezoelectric actuator[J]. Applied Mechanics Materials,2014, 3485:635-637

PDF(2455 KB)

Accesses

Citation

Detail

段落导航
相关文章

/