矩形凹结构转子磁流变阻尼器的设计与优化

卢少波1,2,赵路毅1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 172-179.

PDF(2208 KB)
PDF(2208 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 172-179.
论文

矩形凹结构转子磁流变阻尼器的设计与优化

  • 卢少波1,2,赵路毅1
作者信息 +

Design and optimization of magnetorheological damper for rotor with rectangular concave structure

  • LU Shaobo1,2,ZHAO Luyi1
Author information +
文章历史 +

摘要

针对传统盘式磁流变阻尼器(magneto-rheological damper,MRD)力矩密度偏低的问题,提出在转子端面构造凹结构以增加有效工作间隙长度,保持结构尺寸紧凑的同时,提高输出力矩密度。分别建立了传统盘式、矩形凹结构和弧形凹结构力矩模型,通过关键尺寸设计和定量对比分析表明,在同等条件下矩形凹结构对提升力矩密度效果更佳。为充分利用矩形凹结构的力矩增益效应,定量的分析了矩形槽位置、槽宽和槽深等关键参数对力矩密度和力矩波动的影响规律,得到了关键参数合理的优化区间。在满足目标设计力矩、线圈功率及确定的参数取值范围前提下,以体积最小为目标函数,对包括矩形凹结构的磁流变阻尼器结构参数进行了优化设计。结果表明,优化后装置力矩密度增幅达23.39%,为矩形凹结构转子阻尼器的实际设计提供了指导。

Abstract

Aiming at the problem of low torque density of traditional disk magnetorheological damper, a concave structure is proposed to increase the effective working gap length, keep the structure size compact and improve the output torque density. The torque models of traditional disc, rectangular concave structure, and arc concave structure are established respectively. Through the key size design and quantitative comparison analysis, it is shown that the rectangular concave structure has better effect on improving the torque density under the same conditions. In order to make full use of the torque gain the effect of rectangular concave structure, the influence of key parameters such as rectangular groove position, groove width and groove depth on torque density and torque fluctuation is quantitatively analyzed, and the reasonable optimization interval of key parameters is obtained. Under the premise of satisfying the target design torque, coil power and the determined range of parameters, taking the minimum volume as the objective function, the structural parameters of magnetorheological damper including rectangular grooves are optimized. The results show that the torque density of the optimized device increases by 23.39 %, which provides guidance for the actual design of the rectangular groove rotor damper.

关键词

磁流变阻尼器 / 力矩密度 / 矩形凹结构转子 / 工作路径长度 / 优化设计

Key words

magneto-rheological damper / torque density / rectangular slot rotor / working path length / optimal design

引用本文

导出引用
卢少波1,2,赵路毅1. 矩形凹结构转子磁流变阻尼器的设计与优化[J]. 振动与冲击, 2023, 42(10): 172-179
LU Shaobo1,2,ZHAO Luyi1 . Design and optimization of magnetorheological damper for rotor with rectangular concave structure[J]. Journal of Vibration and Shock, 2023, 42(10): 172-179

参考文献

[1] 黄苗玉, 王恩荣, 闵富红. 磁流变车辆悬架系统的混沌振动分析[J]. 振动与冲击, 2015, 34(24): 128-134.
HUANG Miao-yu, WANG En-rong, MIN Fu-hong. Chaotic vibration analysis of vehicle suspension with magneto-rheological damper[J]. Journal of Vibration and Shock, 2015, 34(24): 128-134.
[2] Hua D, Liu X, Li Z, et al. A Review on Structural Configurations of Magnetorheological Fluid Based Devices Reported in 2018-2020[J]. Frontiers in Materials, 2021, 8: 640102.
[3] Hooshiar A, Payami A, Dargahi J, et al. Magnetostriction-based force feedback for robot-assisted cardiovascular surgery using smart magnetorheological elastomers[J]. Mechanical Systems and Signal Processing, 2021, 161: 107918.
[4] Yang T H, Son H, Byeon S, et al. Magnetorheological Fluid Haptic Shoes for Walking in VR[J]. IEEE Transactions on Haptics, 2020, 14(1): 83-94.
[5] 高瞻. 基于磁流变的手控器力反馈技术[D].东南大学, 2017.
[6] Wu J, Li H, Jiang X, et al. Design, simulation and testing of a novel radial multi-pole multi-layer magnetorheological brake[J]. Smart Materials and Structures, 2018, 27(2): 025016.
[7] Nguyen N D, Le-Duc T, Hiep L D, et al. Development of a new magnetorheological fluid–based brake with multiple coils placed on the side housings[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(5): 734-748.
[8] Qin H, Song A, Mo Y. A hybrid actuator with hollowed multi-drum magnetorheological brake and direct-current micromotor for hysteresis compensation[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(7): 1031-1042.
[9] Hu G, Wu L, Li L. Torque characteristics analysis of a magnetorheological brake with double brake disc[C]//Actuators. Multidisciplinary Digital Publishing Institute, 2021, 10(2): 23-39.
[10] Acharya S, Saini T R S, Kumar H. Optimal design and analyses of T-shaped rotor magnetorheological brake[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, 624(1): 012024.
[11] Shiao Y, Kantipudi M B. High torque density magnetorheological brake with multipole dual disc construction[J]. Smart Materials and Structures, 2022, 31(4): 045022.
[12] Dai Le H, Nguyen Q H, Choi S. Design and experimental evaluation a novel magneto-rheological brake with tooth shaped rotor[J]. Smart Materials and Structures, 2021, 31(1): 015015.
[13] Liu Y, Zhang Y, Tang B, et al. Introducing the thermal field into multi-physics coupling for the modeling of MR fluid-based micro-brake[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121785.
[14] 袁金福, 王建文. 圆槽盘式磁流变液制动器的设计研究[J].机械科学与技术, 2018, 37(02): 226-231.
YUAN Jin-fu, WANG Jian-wen. Design and Research of Circular Groove Disk-type Magneto-rheological Brake[J].Mechanical Science and Technology for Aerospace Engineering,2018,37(02): 226-231.
[15] 胡志坚, 夏雷雷, 孙立志. 磁流变纳米复合材料减振器的磁路分析[J]. 振动与冲击, 2018, 37(12): 260-264.
HU Zhi-jian, XIA Lei-lei, SUN Li-zhi. Magnetic circuit analysis of magnetorheological nanocomposite shock absorber[J]. Journal of Vibration and Shock, 2018,37(12):260-264.
[16] 宋万里, 王思元, 胡志超, 等.基于制动控制器的磁流变制动器性能[J]. 东北大学学报(自然科学版), 2019, 40(03): 375-379+385.
SONG Wan-li, WANG Si-yuan, HU Zhi-chao, et al. Performance of Magneto-Rheological Brake Based on Braking Controller[J].Journal of Northeastern University(Natural Science), 2019, 40(03): 375-379+385.
[17] 王李科, 卢金玲, 廖伟丽, 等. 周向槽对半开叶轮离心泵流动特性的影响研究[J]. 振动与冲击, 2021, 40(17): 175-182+228.
WANG Li-ke, LU Jin-ling, LIAO Wei-li, et al. Effects of circumferential groove on flow characteristics of centrifugal pump with half open impeller. Journal of Vibration and Shock, 2021, 40(17): 175-182.
[18] 左曙光, 毛钰, 吴旭东, 等. 磁流变减振器高频硬化特性建模及优化[J]. 振动与冲击, 2016, 35(10): 120-125.
ZUO Shu-guang, MAO Yu, WU Xu-dong, et al. Modelling and optimization of high frequency hardening characteristics of magneto rheological damper. Journal of Vibration and Shock, 2016, 35(10): 120-125.
[19] Meng D, Zhang L, Yu Z. A dynamic model for brake pedal feel analysis in passenger cars[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(7): 955-968.
[20] Diep B T, Nguyen Q H, Choi S B, et al. Design and experimental evaluation of a novel bidirectional magnetorheological actuator[J]. Smart Materials and Structures, 2020, 29(11): 117001.

PDF(2208 KB)

278

Accesses

0

Citation

Detail

段落导航
相关文章

/