机械振动WSNs子带多阶层自适应量化数据压缩方法

汤恒行,汤宝平,赵春华,叶泉兵

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 188-193.

PDF(1363 KB)
PDF(1363 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 188-193.
论文

机械振动WSNs子带多阶层自适应量化数据压缩方法

  • 汤恒行,汤宝平,赵春华,叶泉兵
作者信息 +

Subband multilayer adaptive quantization data compression method for wireless sensor networks

  • TANG Hengxing,TANG Baoping,ZHAO Chunhua,YE Quanbing
Author information +
文章历史 +

摘要

针对资源受限的机械振动无线传感器网络传输大量振动数据时导致的内存空间消耗大及传输效率低等问题,本文提出一种子带多阶层自适应量化数据压缩方法。首先,传感器节点对原始数据进行分块离散余弦变换(Discrete cosine transform, DCT)以确保子带能量集中;然后采用子带多阶层自适应量化方法对分块变换数据进行量化以减少数据失真,提高重构数据精度;最后,为进一步提升数据的压缩性能和效率,对量化数据进行2-Bit过滤游程算术编码处理。将提出的方法与其他数据压缩方法进行对比以验证本文方法的性能,实验结果表明,该方法可以在资源受限的机械振动无线传感器网络节点中获得良好的压缩效果,对提高大量振动数据传输效率有重要意义。

Abstract

Aiming at the problems of large memory consumption and low transmission efficiency caused by the transmission of large amount of vibration data in resource-constrained mechanical vibration wireless sensor networks, this paper proposes a subband multilayer adaptive quantization data compression method. First, the sensor node performs block discrete cosine transform (DCT) for the original data to ensure that the sub-band energy is concentrated; Then the subband multilayer adaptive quantization method is used to quantize the block transformed data to reduce data distortion and improve the accuracy of reconstructed data; Finally, in order to further improve the data compression performance and efficiency, 2-Bit filtering run-length arithmetic coding is performed for the quantized data. The proposed method is compared with other data compression methods to verify the performance of the method in this paper. The experimental results show that the method can obtain good compression effect in the resource-constrained mechanical vibration wireless sensor network node, which is of great significance to improve the transmission efficiency of a large number of vibration data.

关键词

机械振动监测 / 无线传感器网络 / 数据压缩 / 子带多阶层自适应

Key words

mechanical vibration monitoring / wireless sensor networks(WSNs) / data compression / subband multilayer adaptation

引用本文

导出引用
汤恒行,汤宝平,赵春华,叶泉兵. 机械振动WSNs子带多阶层自适应量化数据压缩方法[J]. 振动与冲击, 2023, 42(10): 188-193
TANG Hengxing,TANG Baoping,ZHAO Chunhua,YE Quanbing. Subband multilayer adaptive quantization data compression method for wireless sensor networks[J]. Journal of Vibration and Shock, 2023, 42(10): 188-193

参考文献

[ 1 ] 曾超,汤宝平,邓蕾,等.基于混合拓扑的机械无线传感器网络多信道数据传输方法[J].振动与冲击, 2018,37(04):28-34.
 ZENG Chao, TANG Baoping, DENG Lei, et al. A multi-channel data transmission method for mechanical wireless sensor networks based on hybrid topology [J]. Journal of Vibration and Shock, 2018,37(4):28-34.
[ 2 ] Huang Y, Tang B , Deng L, et al. Fuzzy analytic hierarchy process-based balanced topology control of wireless sensor networks for machine vibration monitoring[J]. IEEE Sensors Journal, 2020, 20(15): 8256-8264.
[ 3 ] Zhou G, Wang J, Han Y, et al. An experimental study on film pressure circumferential distribution of water-lubricated rubber bearings with multiple grooves[J]. Tribology Transactions, 2017, 60(3): 385-391.
[ 4 ] 朱亮亮,汤宝平,黄艺,邓蕾.机械振动无线传感器网络大量数据传输发射功率优化控制方法[J].振动与冲击,2020,39(17):275-280.
 Zhu Liangliang, Tang Baoping, DENG Lei, et al. Transmit power optimization control method for a mechanical vibration wireless sensor network with a lot of transmission data[J]. Journal of Vibration and Shock, 2020,39(17):275-280.
[ 5 ] Chen Y, Zhu X, Fang K, et al. An improved method for sink node deployment in wireless sensor network to big data[J]. Neural Computing and Applications, 2021: 1-12.
[ 6 ] 郭俊锋,施建旭,雷春丽,魏兴春.一种滚动轴承振动信号的数据压缩采集方法[J].振动与冲击,2015,34(23):8-13.
 GUO Junfeng, SHI Jianxu, LEI Chunli, et al. Data compression method for collecting rolling bearing vibration signals[J]. Journal of Vibration and Shock, 2015,34(23):8-13.
[ 7 ] 李杨,郭龙江,李金宝,任美睿.传感器网络基于小波分段常值压缩的数据收集研究[J]. 仪器仪表学报,2013,34(1):119-127.
 LI Y, GUO L J, LI J B, et al. Data collection using wavelet-segment constant compression in wireless sensor networks [J].Chinese Journal of Scientific Instrument, 2013, 34(1) : 119-127.
[ 8 ] Alsalaet J K, Ali A A. Data compression in wireless sensors network using MDCT and embedded harmonic coding[J]. ISA transactions, 2015, 56: 261-267.
[ 9 ] Guo W, Peter W T. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals[J]. Journal of sound and vibration, 2013, 332(2): 423-441.
[ 10 ] Chan J C, Peter W T. A novel, fast, reliable data transmission algorithm for wireless machine health monitoring[J]. IEEE Transactions on Reliability, 2009, 58(2): 295-304.
[ 11 ]  王楠,孟庆丰,郑斌.振动信号无线传输的数据压缩编码算法[J].振动.测试与诊断,2013,33(02):236-240+338.
 WANG N, MENG Q F, ZHENG B. Data compression and coding algorithm used in wireless transmission of vibration signal [J]. Journal of Vibration, Measurement & Diagnosis,2013,33(2): 236-240.
[ 12 ] Zhang Y, Li J. Wavelet-based vibration sensor data compression technique for civil infrastructure condition monitoring [J]. Journal of computing in civil engineering, 2006,20(6):390-399.
[ 13 ] 黄庆卿, 汤宝平, 邓蕾等. 无线传感器网络子带能量自适应数据压缩方法[J]. 仪器仪表学报, 2014, 35(09): 1998-2003.
 HUANG Q Q, TANG B P, DENG L, et al. Subband energy adaptive data compression method for wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2014, 35(09): 1998-2003.
[ 14 ] Oltean M, Picheral J, Lahalle E, et al. Compression methods for mechanical vibration signals: application to the plane engines[J]. Mechanical Systems and Signal Processing, 2013, 41(1-2): 313-327.
[ 15 ] Witten I H, Neal R M, Cleary J G. Arithmetic coding for data compression[J]. Communications of theACM,1987,30(6): 520-540.

PDF(1363 KB)

Accesses

Citation

Detail

段落导航
相关文章

/