上覆荷载对浅埋地下结构抗震性能的影响

张静堃1,2,于仲洋3,张鸿儒1,2,张泽1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 263-272.

PDF(2310 KB)
PDF(2310 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 263-272.
论文

上覆荷载对浅埋地下结构抗震性能的影响

  • 张静堃1,2,于仲洋3,张鸿儒1,2,张泽1,2
作者信息 +

Influence of overburden load on seismic performance of shallow buried underground structures

  • ZHANG Jingkun1, 2, YU Zhongyang3, ZHANG Hongru1, 2, ZHANG Ze1, 2
Author information +
文章历史 +

摘要

保障地下结构具备足够的抗震性能对于降低结构损伤和提升灾后恢复效率均具有重要意义。为此,利用静-动力耦合的非线性数值分析方法,对不同上覆荷载作用下典型地铁车站的塑性铰发展特性及承重构件截面的弯曲延性需求进行了分析。研究表明:地震作用下弯曲塑性铰首先出现在中柱端部,高轴压比极大削弱了中柱的抗震性能并导致结构整体水平变形能力劣化;结构上覆荷载条件对中柱截面曲率延性系数的影响显著,但对侧墙的影响较为有限;车站承重构件截面延性系数与层间位移角的关系可采用二次多项式函数描述,给出的相应拟合关系式可为抗震设计中构件截面延性比需求的评估提供相关参考。

Abstract

It is of great significance to ensure the sufficient seismic performance of underground structures for reducing structural damage and improving post-disaster recovery efficiency. Therefore, based on the static-dynamic coupling nonlinear numerical analysis method, the developing characteristics of bending plastic hinges of typical subway stations and the ductility demand of critical load-bearing component sections under different overburden loads were analyzed. The results showed that the bending plastic hinge first appears at the end sections of central columns under seismic action, and the high axial compression ratio significantly weakens the seismic performance of columns, which leads to the degradation of the structural horizontal deformation capacity. The influence of the overburden load conditions on the ductility coefficient of the central column sections is significant, but the influence on the side wall is limited. The relationship between the sectional ductility coefficient of the load-bearing components and the interlayer drift ratio can be described by quadratic polynomial functions, and the corresponding fitting functions can provide relevant references for evaluating column ductility demand in the seismic design.

关键词

轴压比 / 地下结构 / 抗震性能 / 地震损伤破坏 / 动力有限元分析

Key words

axial compression ratio / underground structures / seismic performance / seismic damage / dynamic finite element analysis

引用本文

导出引用
张静堃1,2,于仲洋3,张鸿儒1,2,张泽1,2. 上覆荷载对浅埋地下结构抗震性能的影响[J]. 振动与冲击, 2023, 42(10): 263-272
ZHANG Jingkun1, 2, YU Zhongyang3, ZHANG Hongru1, 2, ZHANG Ze1, 2. Influence of overburden load on seismic performance of shallow buried underground structures[J]. Journal of Vibration and Shock, 2023, 42(10): 263-272

参考文献

[1] 杜修力,李洋,许成顺,等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(02): 223-236.
DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(02): 223-236.
[2] 王强茂,李海龙,李廷栋,等. 基于震害统计的城市地下空间地震安全性评价[J]. 地质论评, 2019, 65(06): 1397-1408.
WANG Qiang-mao, LI Hai-long, LI Ting-dong, et al. Seismic safety evaluation of urban underground space based on seismic damage statistics[J]. Geological Review, 2019, 65(06): 1397-1408.
[3] 臧万军. 汶川地震公路隧道震害规律研究[J]. 现代隧道技术, 2017, 54(02): 17-25.
ZANG Wan-jun. Study on seismic damage law of highway tunnels in Wenchuan earthquake[J]. Modern Tunnelling Technology, 2017, 54(02): 17-25.
[4] 路德春,马超,杜修力,等. 城市地下结构抗震韧性研究进展[J/OL]. 中国科学:技术科学, 2021, 51.
LU De-chun, MA Chao, DU Xiu-li, et al. Earthquake resilience of urban underground structures: State of the art[J/OL]. (Scientia Sinica(Technologica)), 2021, 51.
[5] 郑刚,程雪松,周海祚,等. 岩土与地下工程结构韧性评价与控制[J/OL]. 土木工程学报, 2022, 1-39.
ZHENG Gang, CHENG Xue-song, ZHOU Hai-zuo, et al. Resilient evaluation and control of geotechnical and underground engineering structures[J/OL]. China Civil Engineering Journal, 2022, 1-39.
[6] DONG Zheng-fang, LI Cheng-jie, WEN Sen, et al. Study on Seismic Resilience Quantitative Framework of Subway Stations and Resilience Improvement Strategy[J]. Frontiers in Earth Science, 2022, 10: 869965.
[7] DONG Rui, JING Li-ping, LI Yong-qiang, et al. Seismic deformation mode transformation of rectangular underground structure caused by component failure[J]. Tunnelling and Underground Space Technology, 2020, 98: 103298.
[8] 许紫刚,许成顺,杜修力,等. 基于拟静力推覆分析的大开车站和区间隧道地震损伤研究[J]. 岩土工程学报, 2021, 43(07): 1182-1191+1373.
XU Zi-gang, XU Cheng-shun, DU Xiu-li, et al. Research on seismic damage of Daikai station and tunnel based on quasi-static pushover analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(07): 1182-1191+1373.
[9] 王建宁,庄海洋,马国伟,等. 软土层场地复杂地铁地下车站结构地震反应分析[J]. 振动与冲击, 2019, 38(19): 115-122, 160.
WANG Jian-ning, ZHUANG Hai-yang, MA Guo-wei, et al. Seismic responses of a complicated subway underground station in soft soil layers[J]. Journal of Vibration and Shock, 2019, 38(19): 115-122, 160.
[10] 王建宁,马国伟,窦远明,等. 异跨框架式地铁地下车站结构抗震性能水平与评价方法研究[J]. 振动与冲击, 2020, 39(10): 92-100.
WANG Jian-ning, MA Guo-wei, DOU Yuan-ming, et al. Performance levels and evaluation method for seismic behaviors of a large-scale underground subway station with unequal-span frame[J]. Journal of Vibration and Shock, 2020, 39(10): 92-100.
[11] 王建宁,马国伟,庄海洋,等. 不同类别场地大型异跨地铁地下车站结构地震反应分析[J]. 应用基础与工程科学学报, 2021, 29(02): 324-336.
WANG Jian-ning, MA Guo-wei, ZHUANG Hai-yang, et al. Seismic Responses of a Large Unequal-span Underground Subway Station in Different Classified Sites[J]. Journal of Basic Science and Engineering, 2021, 29(02): 324-336.
[12] ZHUANG Hai-yang, ZHAO Chang, CHEN Su, et al. Seismic performance of underground subway station with sliding between column and longitudinal beam[J]. Tunnelling and Underground Space Technology, 2020, 102: 103439.
[13] XU Zi-gang, DU Xiu-li, XU Cheng-shun, et al. Seismic Mitigation Mechanism of FPB Applied in Underground Structure[C]// 2019 International Conference on Civil Engineering, Mechanics and Materials Science (CEMMS 2019). Changsha,China: DEStech Publications, 2019: 12-17.
[14] 马超,王作虎,路德春,等. CFRP加固地铁车站结构中柱地震损伤评价研究[J]. 岩土工程学报, 2020, 42(12): 2249-2256.
MA Chao, WANG Zuo-hu, LU De-chun, et al. Seismic damage evaluation of CFRP-strengthened columns in subway stations[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2249-2256.
[15] MA Chao, LU De-chun, DU Xiu-li. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and underground space technology, 2018, 74: 1-9.
[16] 李晟,庄海洋,王伟,等. 采用不同中柱的单层地铁地下车站结构抗震性能对比研究[J]. 岩土工程学报, 2021, 43(10): 1905-1914+1959-1961.
LI Sheng, ZHUANG Hai-yang, WANG Wei, et al. Seismic performance of single-story subway station structures with different types of columns[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1905-1914+1959-1961.
[17] 于仲洋,张鸿儒,邱滟佳,等. 十字交叉型地铁车站结构的振动台试验研究[J]. 振动与冲击, 2021, 40(09): 142-151.
YU Zhong-yang, ZHANG Hong-ru, QIU Yan-jia, et al. Shaking table tests for cross subway station structure[J]. Journal of Vibration and Shock, 2021, 40(09): 142-151.
[18] MA Chao, LU De-Chun, DU Xiu-Li, et al. Structural components functionalities and failure mechanism of rectangular underground structures during earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 265-280.
[19] 许成顺,李洋,杜修力,等. 上覆土竖向惯性力对浅埋地下框架结构地震损伤反应影响离心机振动台模型试验研究[J]. 土木工程学报, 2019, 52(03): 100-110+119.
XU Cheng-shun, LI Yang, DU Xiu-li, et al. Dynamic centrifuge tests for influence of vertical inertia force of overburden soil on earthquake damage response of shallow-buried underground frame structures[J]. China Civil Engineering Journal, 2019, 52(03): 100-110+119.
[20] XU Cheng-shun, ZHANG Zi-hong, LI Yang, et al. Validation of a numerical model based on dynamic centrifuge tests and studies on the earthquake damage mechanism of underground frame structures[J]. Tunnelling and Underground Space Technology, 2020, 104: 103538.
[21] 许成顺,张梓鸿,李洋,等. 板与柱构件变形能力对地铁车站结构地震破坏反应影响研究[J]. 建筑结构学报, 2022, 43(04): 26-35.
XU Cheng-shun, ZHANG Zi-hong, LI Yang, et al. The influences of different deformation capacity of structure roof and middle columns on earthquake damage responses of subway station structure[J]. Journal of Building Structures, 2022, 43(04): 26-35.
[22] 杜修力,许紫刚,许成顺,等. 基于等效线性化的土-地下结构整体动力时程分析方法研究[J]. 岩土工程学报, 2018, 40(12): 2155-2163.
DU Xiu-li, XU Zi-gang, XU Cheng-shun, et al. Time-history analysis method for soil-underground structure system based on equivalent linear method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2155-2163.
[23] SCOTT B. D., PARK R., PRIESTLEY M. J. N. Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates[J]. Aci Journal, 1982, 79(1): 13-27.
[24] 曲哲,叶列平. 基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型[J]. 工程力学, 2011, 28(06): 45-51.
QU Zhe, YE Lie-ping. Strength deterioration model based on effective hysteretic energy dissipation for RC members under cyclic loading[J]. Engineering Mechanics, 2011, 28(06): 45-51.
[25] 陆新征,叶列平,潘鹏,等. 钢筋混凝土框架结构拟静力倒塌试验研究及数值模拟竞赛Ⅱ:关键构件试验[J]. 建筑结构, 2012, 42(11): 23-26.
LU Xin-zheng, YE Lie-ping, PAN Peng, et al. Pseudo-static collapse experiments and numerical prediction competition of RC frame structure II: key elements experiment[J]. Building Structure, 2012, 42(11): 23-26.
[26] 刘晶波,谷音,杜义欣. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075.
LIU Jing-bo, GU Yin, DU Yi-xin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075.
[27] 于仲洋,张鸿儒. 交叉换乘地铁车站地震特性及其设计方法[J]. 东南大学学报(自然科学版), 2019, 49(05): 1011-1018.
YU Zhong-yang, ZHANG Hong-ru. Seismic characteristics and design method for cross transfer subway stations[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(05): 1011-1018.
[28] 于仲洋,张鸿儒,邱滟佳,等. 地震作用下相邻地下结构与土相互作用特性研究[J]. 地震工程学报, 2020, 42(02): 481-489.
YU Zhong-yang, ZHANG Hong-ru, QIU Yan-jia, et al. Neighboring underground structure-soil interaction characteristics under seismic action[J]. China Earthquake Engineering Journal, 2020, 42(02): 481-489.
[29] FENG Peng, CHENG Shi, BAI Yu, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression[J]. Composite structures, 2015, 123: 312-324.
[30] 陈之毅,刘文博,陈炜. 多层地铁车站结构性能试验研究[J]. 同济大学学报(自然科学版), 2020, 48(6): 811-820.
CHEN Zhi-yi, LIU Wen-bo, CHEN Wei. Performance Experiment of a Multi-story Subway Station[J]. Journal of Tongji University(Natural Science), 2020, 48(6): 811-820.
[31] KOWALSKY M. J. Deformation Limit States for Circular Reinforced Concrete Bridge Columns[J]. Journal of Structural Engineering, 2000, 126(8): 869-878.

PDF(2310 KB)

Accesses

Citation

Detail

段落导航
相关文章

/