一体化内嵌墙板与梁柔性连接钢框架结构抗震性能研究

陈强1,徐宗美1,王少杰1,张旭1,李庆刚2,张中文3

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 297-306.

PDF(2840 KB)
PDF(2840 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 297-306.
论文

一体化内嵌墙板与梁柔性连接钢框架结构抗震性能研究

  • 陈强1,徐宗美1,王少杰1,张旭1,李庆刚2,张中文3
作者信息 +

Study on seismic performance of steel frame structure with integrated embedded wallboard flexibly connected with beam

  • CHEN Qiang1, XU Zongmei1, WANG Shaojie1, ZHANG Xu1, LI Qinggang2, ZHANG Zhongwen3
Author information +
文章历史 +

摘要

一体化内嵌墙板用于钢框架结构可进一步提高装配率,为了提高一体化内嵌墙板的安装效率并减少其对主体结构抗震性能的影响,提出了一种“上挂下坐”式柔性连接方法。为了验证该柔性连接的可靠性并探明采用该方法连接的一体化内嵌墙板对钢框架结构抗震性能的影响,通过低周反复荷载试验和有限元分析研究了多种工况下单榀及空间钢框架结构的受力性能。结果表明:“上挂下坐”式柔性连接可靠,“上挂”区未见明显损伤;墙板与框架柱之间填充轻质泡沫材料,利于耗能且能降低框架结构损伤;采用“上挂下坐”式柔性连接的一体化内嵌墙板对钢框架结构抗震性能的影响分为三个阶段,其中小震下不参与主体结构抗侧,当层间位移角大于1/174时,其对刚度的贡献逐渐显现且存在随机波动性;大震下一体化内嵌墙板可等效为“只受压不受拉”的斜压杆单支撑模型,考虑内嵌墙板作用后基底剪力、塑性铰数量、层间位移角均显著增大或增多,其刚度的随机性对层间位移角和塑性铰存在影响、对基底剪力基本无影响。研究成果可为采用柔性连接的一体化内嵌墙板用于钢框架结构提供参考依据。

Abstract

The integrated embedded wallboard can be used for steel frame structures to further improve the assembly rate, in order to improve the installation efficiency of the integrated embedded wallboard and reduce its impact on the seismic performance of the frame structures, a flexible connection method of "hanging up and bottom sit pulp" is proposed. In order to verify the reliability of the flexible connection and to find out the effect of the integrated embedded wallboard connected by this method on the seismic performance of the steel frame structures, the mechanical performance of the single plane frame and space steel frame structures under various operating conditions was studied through low cycle loading tests and finite elements analysis. The results show that the flexible connection of "hanging up and bottom sit pulp" is reliable, and no obvious damage is seen in the "hanging up" area; the light foam plate is filled between the wallboard and the frame column, which is beneficial to energy consumption and can reduce the damage of frame structures; the influence of the integrated embedded wallboard with "hanging up and bottom sit pulp" flexible connection on the seismic performance of steel frame structures is divided into three stages, among which the small earthquake don’t participate in the anti-side effect of the main structure, when the inter-storey drift ratio is greater than 1/174, its contribution to stiffness gradually appears and there are random fluctuations; the integrated embedded wallboard under a large earthquake can be equivalent to a diagonal strut model with single brace that is "only under pressure and not pulled", considering that the base shear, plastic hinge quantity and inter-storey drift ratio are significantly increased after the action of the embedded wallboard, the randomness of its stiffness has no effect on the inter-storey drift ratio and plastic hinge, and has no effect on the base shear. The research results can provide a reference for the use of flexible connected integrated embedded wallboard for steel frame structures.

关键词

一体化内嵌墙板 / 柔性连接 / 钢框架结构 / 抗震性能 / 斜压杆单支撑模型

Key words

integrated embedded wallboard / flexible connection / steel frame structure / seismic performance / diagonal strut model with single brace

引用本文

导出引用
陈强1,徐宗美1,王少杰1,张旭1,李庆刚2,张中文3. 一体化内嵌墙板与梁柔性连接钢框架结构抗震性能研究[J]. 振动与冲击, 2023, 42(10): 297-306
CHEN Qiang1, XU Zongmei1, WANG Shaojie1, ZHANG Xu1, LI Qinggang2, ZHANG Zhongwen3. Study on seismic performance of steel frame structure with integrated embedded wallboard flexibly connected with beam[J]. Journal of Vibration and Shock, 2023, 42(10): 297-306

参考文献

[1] Du Y S, Zhang Y T, Zhou T, et al. Experimental and numerical study on seismic behavior of SCFRT column frame-buckling restrained steel plate shear wall structure with different connection forms[J]. Engineering Structures, 2021, 239: 112355.
[2] Özbek E, Aykac B, Aykac S. The effects of brick walls strengthened with perforated steel plates on frame behavior[J]. Engineering Structures, 2019, 189: 62-76.
[3] 吴函恒, 周天华, 陈军武, 等. 钢框架-装配式混凝土抗侧力墙板结构基于性能的抗震设计方法[J]. 中南大学学报(自然科学版), 2016, 47(11): 3852-3860.
WU Hanheng, ZHOU Tianhua, CHEN Junwu, et al. Performance-based seismic design method of steel frame-concrete lateral resistance wall fabricated structures[J]. Journal of Central South University (Science and Technology), 2016, 47(11): 3852-3860. (in Chinese)
[4] 刘玉姝, 李国强. 带填充墙钢框架结构抗侧力性能试验及理论研究[J]. 建筑结构学报, 2005, 26(3): 78-84.
LIU Yushu, LI Guoqiang. Experimental and theoretical research on lateral load resistance of steel frames with infilled walls[J]. Journal of Building Structures, 2005, 26(3): 78-84. (in Chinese)
[5] 种迅, 侯林兵, 解琳琳, 等. 含减震外挂墙板的装配式框架结构协同抗震性能研究[J]. 工程力学, 2021, 38(6): 209-217.
CHONG Xun, HOU Linbing, XIE Linlin, et al. Investigation on the collaborative seismic performance of prefabricated frame structures with energy dissipating cladding panels[J]. Engineering Mechanics, 2021, 38(6): 209-217. (in Chinese)
[6] 胡兆文, 王通, 林炳云, 等. 一种装配式建筑用梁板一体化内墙板: CN214117221U[P]. 2021-9-3.
HU Zhaowen, WANG Tong, LIN Bingyun, et al. An integrated embedded wallboard for an assembly-type building with beam: CN214117221U[P]. 2021-9-3. (in Chinese)
[7] 卞文军, 范力, 李升旗. 不同连接方式预制复合墙板填充墙对框架抗震性能的影响[J]. 建筑结构学报, 2020, 41(S1): 196-203.
BIAN Wenjun, FAN Li, LI Shengqi. Influence of prefabricated composite infilled wallboard with different connection modes on seismic behavior of frame structure[J]. Journal of Building Structures, 2020, 41(S1): 196-203. (in Chinese)
[8] 侯和涛, 周健, 臧海涛, 等. 复合墙板与钢框架的连接节点抗震试验研究[J]. 工程力学, 2014, 31(10): 85-91+115.
HOU Hetao, ZHOU Jian, ZANG Haitao, et al. Experimental study on seismic test of connections of steel frames and sandwich composite panels[J]. Engineering Mechanics, 2014, 31(10): 85-91+115. (in Chinese)
[9] 王静峰, 叶慧君, 李金超, 等. 填充节能复合墙板钢框架结构的抗震性能[J]. 建筑钢结构进展, 2015, 17(6): 35-43.
WANG Jingfeng, YE Huijun, LI Jinchao, et al. Seismic behavior of steel frame structures filled with sandwich composite panels[J]. Progress in Steel Building Structures, 2015, 17(6): 35-43. (in Chinese)
[10] Hou H T, Chou C C, Zhou J, et al. Cyclic tests of steel frames with composite lightweight infill walls[J]. Earthquakes and Structures, 2016, 10(1): 163-178.
[11] 严佳川, 李睿杰, 支旭东. 复合墙板-新型可滑动节点体系拟静力试验研究[J]. 土木工程学报, 2020, 53(S2): 156-161.
YAN Jiachuan, LI Ruijie, ZHI Xudong. Pseudo-static test study on novel sliding bolt connection system of sandwich wallboard[J]. China Civil Engineering Journal, 2020, 53(S2): 156-161. (in Chinese)
[12] 李九阳, 陈剑. 复合墙板与钢框架新型连接方式研究[J]. 建筑结构, 2018, 48(11): 90-93+108.
LI Jiuyang, CHEN Jian. Research on new connection of composite wall panel with steel frame[J]. Building Structure, 2018, 48(11): 90-93+108. (in Chinese)
[13] 李晓东, 康永康, 宋子阳, 等. 纤维石膏基复合墙板轻钢框架抗震性能分析[J]. 哈尔滨工程大学学报, 2020, 41(12): 1797-1803.
LI Xiaodong, KANG Yongkang, SONG Ziyang, et al. Seismic behavior of lightweight steel frame with fiber gypsum-based composite wallboard[J]. Journal of Harbin Engineering University, 2020, 41(12): 1797-1803. (in Chinese)
[14] Yu J G, Huang J, Li B, et al. Experimental study on steel plate shear walls with novel plate-frame connection[J]. Journal of Constructional Steel Research, 2021, 180: 106601.
[15] 王曙光, 庄丽, 杜东升, 等.新型SIP填充墙板框架结构足尺振动台试验研究[J]. 振动与冲击, 2015, 34(18): 100-105.
WANG Shuguang, ZHUANG Li, DU Dongsheng, et al. Full scale shaking table tests on frame structure with new SIP filling wallboard[J]. Journal of Vibration and Shock, 2015, 34(18): 100-105.
[16] Zhang C, Wu J, Huang W Y, et al. Experimental and numerical study on seismic performance of semi-rigid steel frame infilled with prefabricated damping wall panels[J]. Engineering Structures, 2021, 246: 113056.
[17] Roca P. Assessment of masonry shear-walls by simple equilibrium models[J]. Construction and Building Materials, 2005, 20(4): 229-238.
[18] Sun G H, Chuang-sheng W Y, Gu Q, et al. An effective simplified model of composite compression struts for partially-restrained steel frame with reinforced concrete infill walls[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(2): 403-415.
[19] Cao W L, Wang R W, Yin F, et al. Seismic performance of a steel frame assembled with a CFST-bordered composite wall structure[J]. Engineering Structures, 2020, 219: 110853.
[20] 王少杰, 张旭, 陈强, 等. 一种用于低周往复试验加载的面外防失稳装置: CN214748917U[P]. 2021-11-16.
WANG Shaojie, ZHANG Xu, CHEN Qiang, et al. An out of plane anti-instability device for low cycle loading tests: CN214748917U[P]. 2021-11-16. (in Chinese)
[21] GB 50011-2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.
GB 50011-2010 Code for seismic design of buildings[S]. Beijing: Building Industry Press of China, 2016. (in Chinese)
[22] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.
FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46. (in Chinese)
[23] 伍国军, 陈卫忠, 谭贤君, 等. 基于拉丁超立方抽样的有限元可靠度程序开发及应用[J]. 岩土力学, 2015, 36(2): 550-554.
WU Guojun, CHEN Weizhong, TAN Xianjun, et al. Program development of finite element reliability method and its application based on Latin hypercube sampling[J]. Journal of Building Structures, 2015, 36(2): 550-554. (in Chinese)

PDF(2840 KB)

316

Accesses

0

Citation

Detail

段落导航
相关文章

/