混合激励压电振动能量收集器的机电响应分析

高铭阳,刘文光,陈红霞,冯逸亭,鹿青山

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 58-66.

PDF(1780 KB)
PDF(1780 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 58-66.
论文

混合激励压电振动能量收集器的机电响应分析

  • 高铭阳,刘文光,陈红霞,冯逸亭,鹿青山
作者信息 +

Eelectromechanical response analysis of a hybrid excitation piezoelectric vibration energy harvester

  • GAO Mingyang,LIU Wenguang,CHEN Hongxia,FENG Yiting,LU Qingshan
Author information +
文章历史 +

摘要

为提高压电振动能量收集器在多种能量环境下的工作效率,旨在研究一种基础激励和风流体混合激励下压电振动能量收集器的机电响应性能。根据Euler-Bernoulli弹性梁振动理论建立了混合激励下压电悬臂梁的分布参数模型,通过建立机电耦合降阶模型得到了系统的第一阶模态机电控制方程,利用机电解耦方法推导了系统响应的解析解,讨论了负载电阻、风速对系统固有频率及机电阻尼的影响,分析了负载电阻、加速度及风速对系统发电性能的影响,验证了理论模型的正确性。结果表明:与基础激励相比,混合激励不但增大系统的能量收集功率,而且可在更宽的频带区间内收集能量。

Abstract

To improve the working efficiency of piezoelectric vibration energy harvester under various energy environments, the response and performance of piezoelectric vibration energy harvester under hybrid excitations of basic excitation and galloping were studied. According to the Euler-Bernoulli elastic beam vibration theory, the distributed parameter model of piezoelectric cantilever beam under hybrid excitations was established. By establishing the electromechanical coupling reduced order model, the system electromechanical control equation of the first mode was obtained, and the analytical solution of the system response was derived by electromechanical decoupling method. The coupling relationship between the two kinds of hybrid excitations was established. The effects of load resistance and wind speeds on the system natural frequency and electromechanical damping were discussed. And the effects of load resistance, acceleration and wind speeds on the power generation performance were analyzed. The correctness of the theoretical model was verified. The results showed that compared with the basic excitation, the hybrid excitation not only increased the system energy collection power but also broadened the frequency band.

关键词

压电能量收集 / 混合激励 / 机电响应分析 / 驰振

Key words

piezoelectric energy harvesting / hybrid excitation / electromechanical response analysis / galloping

引用本文

导出引用
高铭阳,刘文光,陈红霞,冯逸亭,鹿青山. 混合激励压电振动能量收集器的机电响应分析[J]. 振动与冲击, 2023, 42(10): 58-66
GAO Mingyang,LIU Wenguang,CHEN Hongxia,FENG Yiting,LU Qingshan. Eelectromechanical response analysis of a hybrid excitation piezoelectric vibration energy harvester[J]. Journal of Vibration and Shock, 2023, 42(10): 58-66

参考文献

[1] Kamenar E, Zelenika S, Blažević D, et al. Harvesting of river flow energy for wireless sensor network technology[J]. Microsystem Technologies, 2016, 22(7): 1557–1574.
[2] 刘祥建, 陈仁文. 压电振动能量收集装置研究现状及发展趋势[J]. 振动与冲击, 2012, 31(16): 169–176.
LIU Xiang-jian, CHEN Ren-wen. Current situation and developing trend of piezoelectric vibration energy harvesters [J]. Journal of Vibration And Shock, 2012, 31(16): 169–176.
[3] 袁江波, 谢涛, 单小彪, 等. 复合型悬臂梁压电振子振动模型及发电实验研究[J]. 机械工程学报, 2010, 46(09): 87–92.
YUAN Jiang-bo, XIE Tao, SHAN Xiao-biao, et al. Vibrated model and experiments of multiple piezoelectric cantilevers in energy harvesting [J]. Journal of mechanical engneering, 2010, 46(09): 87–92.
[4] Cook-Chennault K A, Thambi N, Sastry A M. Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems[J]. Smart Materials and Structures, 2008, 17(4): 043001.
[5] Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003–2006)[J]. Smart Materials and Structures, 2007, 16(3): R1–R21.
[6] 张旭辉, 左萌, 谭厚志, 等. 磁场耦合双梁压电振动俘能器响应特性研究[J]. 传感器与微系统, 2019, 38(12): 10-13+17.
ZHANG-Xu-hui, ZUO Meng, TAN Hou-zhi, et al. Research on response characteristics of dual-beam piezoelectric vibrational energy capture with magnetic field coupling [J]. Transducer and Microsystem Technologies, 2019, 38(12): 10-13+17.
[7] Wang K F, Wang B L, Zeng S. Analysis of an array of flexoelectric layered nanobeams for vibration energy harvesting[J]. Composite Structures, 2018, 187: 48–57.
[8] 陈春林, 李肇奇, 梁旭, 等. 悬臂梁挠曲电俘能器的力电耦合模型及性能分析[J]. 固体力学学报, 2020, 41(02): 159–169.
CHEN Chun-lin, LI Zhao-qi, LIANG Xu, et al. Electromechanical coupling model and performance analysis of the unimorph cantilever beam-based flexoelectric energy harvester [J]. Chinese journal of solid mechanics, 2020, 41(02): 159–169.
[9] Zhang X, Zuo M, Tan H, et al. Dynamics analysis of multi-field coupled piezoelectric energy harvester under random excitation[J]. IOP Conference Series: Materials Science and Engineering, 2019, 531(1): 012038.
[10] Malaji P V, Ali S F. Broadband energy harvesting with mechanically coupled harvesters[J]. Sensors and Actuators A: Physical, 2017, 255: 1–9.
[11] Garg A, Dwivedy S K. Dynamic analysis of piezoelectric energy harvester under combination parametric and internal resonance: a theoretical and experimental study[J]. Nonlinear Dynamics, 2020, 101(4): 2107–2129.
[12] 白凤仙, 张梦洁, 孙建忠, 等. 可穿戴式筒壳型压电能量收集器的研究与设计[J]. 压电与声光, 2021, 43(01): 39–44.
BAI Feng-xian, ZHANG Meng-jie, XUN Jian-zhong,et al. Researh and design of werable cylindrical shell piezoelectric energy harvester [J]. Piezoelectrics & acoustooptics, 2021, 43(01): 39–44.
[13] Shi T, Hu G, Zou L, et al. Performance of an omnidirectional piezoelectric wind energy harvester[J]. Wind Energy, 2021, 24(11): 1167–1179.
[14] Sun W, Seok J. Novel galloping-based piezoelectric energy harvester adaptable to external wind velocity[J]. Mechanical Systems and Signal Processing, 2021, 152: 107477.
[15] Wang K F, Wang B L, Gao Y, et al. Nonlinear analysis of piezoelectric wind energy harvesters with different geometrical shapes[J]. Archive of Applied Mechanics, 2020, 90(4): 721–736.
[16] Qin W, Deng W, Pan J, et al. Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping[J]. Energy, 2019, 189: 116237.
[17] 王红艳, 胡嘉睿, 隽文烁, 等. 风致驰振型压电-电磁复合俘能器等效电路建模及参数影响分析[J]. 传感技术学报, 2021, 34(09): 1158–1164.
WANG Hong-yan, HO Jia-rui, JUNWen-shuo, et al. Equivalent Circuit modeling and parameter analysis for wind galloping piezoelectric-electromagnetic hybrid energy harvester [J]. Chinese journal of sensons and actuators, 2021, 34(09): 1158–1164.
[18] 丁林, 杨林, 张力, 等. 钝体-压电片风致振动能量收集优化实验[J]. 吉林大学学报(工学版), 2020, 50(03): 886–893.
DING Lin, YANG Lin, et al. Experimental investigation on energy harvesting optimization of wind⁃induced vibration for bluff body⁃piezoelectric film [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(03): 886–893.
[19] Bibo A. Investigation of Concurrent Energy Harvesting from Ambient Vibrations and Wind[J]. : 152.
[20] Erturk A, Inman D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J]. Smart Materials and Structures, 2009, 18(2): 025009.
[21] 贺学锋, 杜志刚, 赵兴强, 等. 悬臂梁式压电振动能采集器的建模及实验验证[J]. 光学精密工程, 2011, 19(08): 1771–1778.
HE Xue-feng, DU Zhi-gang, ZHAO Xing-qiang, et al. Modeling and experimental verification for cantilevered piezoelectric vibration energy harvester [J]. Optics and precision engineering, 2011, 19(08): 1771–1778.
[22] Abdelkefi A, Yan Z, Hajj M R. Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping[J]. Smart Materials and Structures, 2013, 22(2): 025016.
[23] Abdelkefi A, Yan Z, Hajj M R. Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(2): 246–256.
[24] Yan Z, Abdelkefi A, Hajj M R. Piezoelectric energy harvesting from hybrid vibrations[J]. Smart Materials and Structures, 2014, 23(2): 025026.
[25] Barrero-Gil A, Alonso G, Sanz-Andres A. Energy harvesting from transverse galloping[J]. Journal of Sound and Vibration, 2010, 329(14): 2873–2883.
[26] Tan T, Yan Z, Hajj M. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters[J]. Applied Physics Letters, 2016, 109(10): 101908.
[27] Abdelkefi A, Nayfeh A H, Hajj M R. Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters[J]. Nonlinear Dynamics, 2012, 67(2): 1147–1160.

PDF(1780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/