单桩基础海上风机横向自振频率求解及参数敏感性分析

余云燕,孔嘉乐

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 82-91.

PDF(2132 KB)
PDF(2132 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 82-91.
论文

单桩基础海上风机横向自振频率求解及参数敏感性分析

  • 余云燕,孔嘉乐
作者信息 +

Solution of transverse natural frequency and parameter sensitivity analysis of offshore fan with single pile foundation

  • YU Yunyan,KONG Jiale
Author information +
文章历史 +

摘要

梁理论的合理选择对风机横向自振频率的求解意义重大。以往提出的海上风机自振频率计算方法都基于某一种梁理论,且缺乏各参数的敏感性分析。为了对比不同梁理论对风机自振频率求解的影响,采用回传射线矩阵法,分别基于Bernoulli-Euler梁、经典Timoshenko梁和修正Timoshenko梁理论,提出海上风机横向自振频率计算方法,通过实测数据验证了该方法的准确性,并综合对比各参数的敏感性。研究结果表明:Bernoulli-Euler梁理论未考虑剪切变形与转动惯量,自振频率计算结果略大于Timoshenko梁理论;剪切变形引起的转动惯量可以忽略不计,修正Timoshenko梁理论与经典Timoshenko梁理论计算结果一致,但物理意义更加清晰;基频对塔筒结构参数的敏感性最高,其次是连接段与桩基;基频对塔筒高度的敏感性最高,对海床高度与叶轮机舱组件质量的敏感性较高,壁厚变化对基频的影响不显著。

Abstract

The reasonable selection of beam theory is of great significance to the solution of transverse natural frequency of fan. The previous calculation methods of natural frequency of offshore wind turbine are based on a certain beam theory, and lack of sensitivity analysis of each parameter. In order to compare the influence of different beam theories on the calculation of fan natural frequency, the method of reverberation-ray matrix(MRRM) is used to calculate the transverse natural frequency of offshore fan based on Bernoulli-Euler beam, classical Timoshenko beam and modified Timoshenko beam theory respectively. The accuracy of the method is verified by the measured data, and the sensitivity of each parameter is compared comprehensively. The results show that Bernoulli-Euler beam theory does not take into account shear deformation and moment of inertia, and the calculation result of natural frequency is slightly larger than that of Timoshenko beam theory, the moment of inertia caused by shear deformation is negligible, and the result of modified Timoshenko beam theory is consistent with that of classical Timoshenko beam theory, but the physical meaning is clearer, and the fundamental frequency is the most sensitive to tower tube structure parameters, followed by connecting section and pile foundation. The fundamental frequency is the most sensitive to the height of the tower tube, and is more sensitive to the sea bed height and the quality of the impeller engine room components, and the change of wall thickness has no significant effect on the fundamental frequency.

关键词

海上风机 / 单桩基础 / 自振频率 / 回传射线矩阵法 / 敏感性分析

Key words

offshore wind turbine / single pile foundation / natural frequency / method of reverberation-ray matrix / sensitivity analysis

引用本文

导出引用
余云燕,孔嘉乐. 单桩基础海上风机横向自振频率求解及参数敏感性分析[J]. 振动与冲击, 2023, 42(10): 82-91
YU Yunyan,KONG Jiale. Solution of transverse natural frequency and parameter sensitivity analysis of offshore fan with single pile foundation[J]. Journal of Vibration and Shock, 2023, 42(10): 82-91

参考文献

[1] 董霄峰, 练继建, 王海军. 运行状态下海上风机结构振源特性研究[J]. 振动与冲击, 2017, 36(17):21-28.
DONG Xiao-feng, LIAN Ji-jian, WANG Hai-jun. Vibration source features of offshore wind power structures under operational conditions[J]. Journal of Vibration and Shock, 2017, 36(17): 21-28.
[2] Kühn M, Cockerill T T, Harland L A, et al. Opti-OWECS Final Report Vol. 2: Methods assisting the design of offshore wind energy conversion systems[R]. Delft University of Technology: Faculty of Civil Engineering and Geoscience, 1997.
[3] DNV G. DNV-OS-J101–Design of offshore wind turbine structures[S]. Norway: DNV Press, 2014.
[4] Adhikari S, Bhattacharya S. Vibrations of wind-turbines considering soil-structure interaction[J]. Wind and Structures, 2011,14(2):85-112.
[5] Bhattacharya S, Adhikari S. Experimental validation of soil-structure interaction of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2011,31:805-816.
[6] 黄玉佩. 大直径单桩基础海上风机支撑结构动力性状[D]. 杭州: 浙江大学, 2017.
HUANG Yu-pei. Dynamic behavior of offshore wind turbine monopile structure[D]. Hangzhou: Zhejiang University, 2017.
[7] 杨春宝, 王睿, 张建民. 单桩基础型近海风机系统自振频率实用计算方法[J]. 工程力学, 2018, 35(4): 219-225.
YANG Chun-bao, WANG Rui, ZHANG Jian-min. Numerical method for calculating system fundamental frequencies of offshore wind turbines with monopile foundation[J]. Engineering Mechanics, 2018, 35(4): 219-225.
[8] Arany L, Bhattacharya S, Adhikari S, et al. An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models[J]. Soil Dynamics and Earthquake Engineering, 2015, 74: 40-45.
[9] Arany L, Bhattacharya S, Macdonald J H G,et al. Closed form solution of eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI[J]. Soil Dynamics & Earthquake Engineering, 2016, 83: 18-32.
[10] Wang P G, Chang Y F, Zhao M, et al. Analytical solution for monopile supported offshore wind turbines considering soil-pile-water interaction[J]. IOP Conference Series: Earth and Environmental Science, 2021, 719(4): 042015.
[11] 陈镕,万春风,薛松涛,等. Timoshenko梁运动方程的修正及其影响[J].同济大学学报(自然科学版),2005, (06): 711-715.
CHEN Rong, WAN Chun-feng, XUE Song-tao, et al. Modification of motion equation of Timoshenko beam and its effect[J]. Journal of Tongji University (Natural Science), 2005, (06): 711-715.
[12] 夏呈. 修正铁摩辛柯梁受迫振动响应分析及其应用[D]. 南京: 东南大学, 2017.
XIA Cheng. The analysis of forced vibration response of modified Timoshenko beam theory and its application. Nanjing: Southeast University, 2017.
[13] Pao Y H, YU Yun-yan. Attenuation and damping of multireflected transient elastic waves in a pile[J]. Journal of Engineering Mechanics, 2011, 137(8): 571-580.
[14] 陈进浩, 余云燕. 框架结构瞬态波动响应及自振频率的回传射线矩阵法分析[J]. 振动与冲击, 2016, 35(10):83-90.
CHEN Jin-hao, YU Yun-yan. Analysis of the transient response and natural frequency of a frame by the reverberation-ray matrix method[J]. Journal of Vibration and Shock, 2016, 35(10): 83-90.
[15] 付艳艳, 余云燕. 黏弹性Pasternak地基上两端简支的Timoshenko梁横向自由振动解析解[J]. 振动与冲击, 2020, 39(19):32-38.
FU Yan-yan, YU yun-yan. Analytical solution to transverse free vibration characteristics of a simply supported Timoshenko beam on viscoelastic Pasternak foundation[J]. Journal of Vibration and Shock, 2020, 39(19):32-38.
[16] 付艳艳, 余云燕. 经典边界条件黏弹性Pasternak地基上Bernoulli-Euler梁横向自振特性分析[J]. 振动与冲击, 2021, 40(01):173-182.
FU Yan-yan, YU Yun-yan. Transverse free vibration characteristics of Bernoulli-Euler beam on viscoelastic Pasternak foundation under classical boundary conditions[J]. Journal of Vibration and Shock, 2021, 40(01):173-182.
[17] 赵密, 常逸夫, 王丕光, 等. 考虑水-桩-土相互作用的单桩式海上风机结构系统自振频率解析解[J]. 震灾防御技术, 2020, 15(4): 659-669.
ZHAO Mi, CHANG Yi-fu, WANG Pi-guang, et al. An analytical natural frequency solution of monopile offshore wind turbine considering pile-soil interaction[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 659-669.
[18] 王腾, 王婵. 径向软化成层土中单桩风机水平振动特性研究[J]. 振动与冲击, 2021, 40(11):86-93.
WANG Teng, WANG Chan. Horizontal vibration characteristics of monopile wind turbine in radial softening layered soil[J]. Journal of Vibration and Shock, 2021, 40(11):86-93.
[19] Bhattacharya S. Design of foundations for offshore wind turbines [M]. Chichester: John Wiley and Sons Limited, 2019: 250-251.
[20] Damgaard M, Ibsen L B, Andersen L V, et al. Cross-wind modal properties of offshore wind turbines identified by full scale testing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116: 94-108.
[21] 《工程地质手册》编委会. 工程地质手册(第五版)[M]. 北京: 中国建筑工业出版社, 2018年,第176页.
《Geological Engineering Handbook》editorial board. Geological Engineering Handbook (The Fifth Edition)[M]. Beijing: China Architecture & Building Press,2018, page176.
[22] Makris N, Gazetas G. Dynamic pile-soil-pile interaction. Part Ⅱ: lateral and seismic response [J]. Earthquake Engineering and Structural Dynamics,1992,21:145-162.
[23] 陈琛, 马宏旺, 李玉韬, 等. 冲刷对海上风电单桩基础自振频率影响的研究[J]. 振动与冲击, 2020, 39(22):16-22.
CHEN Chen, MA Hong-wang, LI Yu-tao, et al. Effects of scour on the natural frequency of offshore wind turbine structures[J]. Journal of Vibration and Shock, 2020, 39(22): 16-22.

PDF(2132 KB)

1417

Accesses

0

Citation

Detail

段落导航
相关文章

/