高温与冲击耦合作用下双钢管混凝土柱动态响应数值模拟研究

孔祥清1,张惠玲1,张文萍1,付莹1,2,章文姣1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 92-102.

PDF(2992 KB)
PDF(2992 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (10) : 92-102.
论文

高温与冲击耦合作用下双钢管混凝土柱动态响应数值模拟研究

  • 孔祥清1,张惠玲1,张文萍1,付莹1,2,章文姣1
作者信息 +

Numerical simulation study on dynamic response of concrete-filled double-tube columns under coupled high temperature and impact

  • KONG Xiangqing1,ZHANG Huiling1,ZHANG Wenping1,FU Ying1,2,ZHANG Wenjiao1
Author information +
文章历史 +

摘要

为研究双钢管混凝土(concrete-filled double-tube,CFDT)柱在高温下的抗冲击性能,利用ABAQUS 有限元软件建立CFDT柱在高温与冲击耦合作用下的有限元模型,考虑材料的温度软化、应变率强化效应以及轴力的影响,并通过已有CFDT柱的火灾试验和常温下侧向冲击试验进行了分段验证。在此基础上,从冲击力、跨中位移、荷载分布情况与损伤演化等方面分析了不同温度下CFDT柱的抗冲击动态响应,并考虑了不同截面形式、轴压比、冲击速度和混凝土强度对CFDT柱抗冲击性能的影响。研究结果表明:高温与冲击耦合作用下,CFDT柱主要呈现弯曲破坏,随着温度升高,CFDT柱抗冲击性能和抗弯承载力逐渐降低。CFDT柱的耐火极限是普通钢管混凝土柱的2.1倍。轴力对CFDT柱抗冲击性能产生不利影响,当轴压比从 0 增加到 0.6,高温800℃时构件冲击力平台值下降了32.4%;混凝土强度对高温下CFDT柱抗冲击性能有显著影响,高温800℃时混凝土强度由 40MPa 增加到 60MPa,构件冲击力平台值提高了22.8%。

Abstract

To study the impact resistance of concrete-filled double-tube (CFDT) columns at high temperature, a 3D finite element numerical model of CFDT columns under coupled high temperature and impact was established via ABAQUS finite element software, considering material softening temperature, strain rate of reinforcement effect and the influence of axial force. The results were verified by existing fire tests and lateral impact tests of CFDT columns at room temperature. On this basis, the dynamic response of CFDT columns at different temperatures was analyzed from the aspects of impact force, mid-span displacement, load distribution and damage evolution. Then, the effects of different section forms, axial compression ratio, impact velocity and concrete strength on the impact resistance of CFDT columns were considered. The results showed that CFDT columns mainly exhibit bending failure under coupled high temperature and impact. With the increase of temperature, the impact resistance and flexural capacity of CFDT columns gradually decrease. The fire resistance of CFDT columns is 2.1 times that of normal concrete-filled steel tube columns. The axial force has a negative effect on the impact resistance of CFDT columns. When the axial compression ratio increases from 0 to 0.6, the platform value of impact force decreases by 32.4% at 800℃. The concrete strength has significant influence on the impact resistance of CFDT columns at high temperature. When the concrete strength increases from 40MPa to 60MPa, the platform value of impact force increases by 22.8 % at 800℃.

关键词

双钢管混凝土柱 / 高温 / 冲击 / 耦合作用 / 有限元分析

Key words

concrete-filled double-tube (CFDT) columns / high temperature / impact resistance / coupling effect / finite element analysis

引用本文

导出引用
孔祥清1,张惠玲1,张文萍1,付莹1,2,章文姣1. 高温与冲击耦合作用下双钢管混凝土柱动态响应数值模拟研究[J]. 振动与冲击, 2023, 42(10): 92-102
KONG Xiangqing1,ZHANG Huiling1,ZHANG Wenping1,FU Ying1,2,ZHANG Wenjiao1. Numerical simulation study on dynamic response of concrete-filled double-tube columns under coupled high temperature and impact[J]. Journal of Vibration and Shock, 2023, 42(10): 92-102

参考文献

[1] 胡文伟, 王蕊, 赵晖, 等. 火灾与撞击联合作用下钢管混凝土柱力学性能研究[J]. 爆炸与冲击, 2021, 0151:1-12.
HU Wenwei, WANG Rui, ZHAO Hui, et al. Mechanical behavior of concrete-filled steel tubular (CFST) columns subjected to coupled fire and impact loading[J]. Explosion and Shock Waves, 2021, 0151:1-12.
[2] Xian W, Chen W, Hao H, et al. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members[J]. Composite Structures, 021, 255(2):112993.
[3] Wang R, Han L H, Zhao X L, et al. Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact[J]. Thin-Walled Structures, 2016, 101:129-140.
[4] Xian W, Wang W D, Wang R, et al. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads[J]. Thin-Walled Structures, 2020, 151:106736.
[5] Xian W, Chen W S, Hao H, et al. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact[J]. Thin-Walled Structures, 2021, 160:107409.
[6] Shekastehband B, Taromi A, Abedi K. Fire performance of stiffened concrete filled double skin steel tubular columns[J]. Fire safety journal, 2017, 88:13-25.
[7] Wang R, Han L H, Tao Z. Behavior of FRP-concrete-steel double skin tubular members under lateral impact: Experimental study[J]. Thin-Walled Structures, 2015, 95:363-373.
[8] 候俊. 不锈钢-混凝土-钢管组合构件在低速撞击下的力学性能研究[D]. 太原:太原理工大学, 2017.
HOU Jun. Study on mechanical properties of stainless steel concrete pipe composite members under low velocity impact[D]. Taiyuan:Taiyuan University of Technology, 2017.
[9] Ghannam M, Metwally I M. Numerical investigation for the behaviour of stiffened circular concrete filled double tube columns[J]. Structures, 2020, 25:901–919.
[10] Zheng Y Q, Tao Z. Compressive strength and stiffness of concrete-filled double-tube columns[J]. Thin-Walled Structures, 2019, 134:174-188.
[11] 王卫华, 张伟, 白杨, 等. 高温下内配圆管的方钢管混凝土柱轴压力学性能[J]. 工程力学, 2018, 35(03):141-150.
WANG Weihua, ZHANG Wei, BAI Yang, et al. Axial performance of square concrete-filled steel tube (CFST) columns reinforced by circular steel tubes at elevated temperatures[J]. Engineering Mechanics, 2018, 35(03):141-150.
[12] 方小丹, 林斯嘉. 复式钢管高强混凝土柱轴压试验研究[J]. 建筑结构学报, 2014, 35(04): 236-245.
FANG Xiaodan, LIN Sijia. Axial compressive test of columns with multi barrel tube-confined high performance concrete[J]. Journal of Building Structures, 2014, 35(04): 236-245.
[13] 江韩, 储良成, 左江, 等. 轴心受压双钢管混凝土短柱正截面受压承载力理论分析及试验研究[J]. 建筑结构学报, 2008, 29(04):96-105.
JIANG Han, CHU Liangcheng, ZUO Jiang, et al. Theoretical analysis and experimental study on normal cross-section load-carrying capacity for concrete-filled double steel tubular short columns subjected to axial compression load[J]. Journal of Building Structures, 2008, 29(04):96-105.
[14] Ekmekyapar T, Al-Eliwi B J M. Concrete filled double circular steel tube (CFDCST) stub columns[J]. Engineering Structures, 2017, 135:68-80.
[15] Ekmekyapar T, Alwan O H, Hasan H G, et al. Comparison of classical, double skin and double section CFST stub columns: Experiments and design formulations[J]. Journal of Constructional Steel Research, 2019, 155:192-204.
[16] 张素梅, 李孝忠, 卢炜, 等. 钢管约束的钢管混凝土短柱轴压性能试验研究[J]. 建筑结构学报, 2020, 0657.
ZHANG Sumei, LI Xiaozhong, LU Wei, et al. Experimental study on behavior of steel-tube-confined cfst short columns under axial compression[J]. Journal of Building Structures, 2020, 0657.
[17] 慈俊昌, 闫维明, 贾洪. 圆复合钢管混凝土短柱在轴压下的有限元分析[J]. 北京工业大学学报, 2020, 46(8):918-928.
CI Junchang, YAN Weiming, JIA Hong. Finite element analysis of circular concrete-filled double steel tubular short columns under axial compression[J]. Journal of Beijing University of Technology, 2020, 46(8):918-928.
[18] 朱翔, 陆新征, 杜永峰, 等. 新型复合柱抗冲击试验研究及有限元分析[J]. 工程力学, 2016, 33(08):158-166.
ZHU Xiang, LU Xinzheng, DU Yongfeng, et al. Experimental study and finite element analysis of impact resistance of novel composite columns[J]. Engineering Mechanics, 2016, 33(08):158-166.
[19] Romero M L, Espinos A, Portoles J M, et al. Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire[J]. Engineering Structures, 2015, 99:536-545.
[20] 韩林海. 钢管混凝土结构-理论与实践[M]. 北京:科学出版社, 2007.
HAN Linhai. Concrete filled steel tubular structures-theory and practice[M]. Beijing:Science Press, 2007.
[21] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究[D]. 北京:清华大学, 2012.
HOU Chuanchuan. Study on performance of circular concrete-filled steel tubular (CFST) members under low velocity transverse impact[D]. Beijing:Tsinghua University, 2012.
[22] Liew J, Chen H. Explosion and fire analysis of steel frames using mixed element approach[J]. Journal of Engineering Mechanics, 2005, 131(6):606-616.
[23] Hui L, Zhao X L, Han L H. FE modelling and fire resistance design of concrete filled double skin tubular columns[J]. Journal of Constructional Steel Research, 2011, 67(11):1733-1748.
[24] Yu X, Chen L, Fang Q, et al. A concrete constitutive model considering coupled effects of high temperature and high strain rate[J]. International Journal of Impact Engineering, 2016, 101:66-77.
[25] 康昌敏, 王蕊, 朱翔. 轴压比对钢管混凝土柱侧向冲击性能影响研究[J]. 工程力学, 2020, 37:254-260.
KANG Changmin, WANG Rui, ZHU Xiang. The influence of axial compression ratio on the lateral impact performance of concrete filled steel tube columns[J]. Engineering Mechanics, 2020, 37:254-260.
[26] 张力. 火灾与冲击耦合作用下钢管混凝土柱力学性能研究[D]. 太原:太原理工大学, 2020.
ZHANG Li. Study on Performance of Concrete-Filled Steel Tubular Columns under Combined Actions of Fire and Impact Loadings[D]. Taiyuan:Taiyuan University of Technology, 2020.
[27] Zheng Y Q, Liang W G, Zhang X L. Fire resistance of restrained circular concrete-filled double-skin steel tubular columns[J]. Magazine of Concrete Research, 2020.
[28] 史艳莉, 纪孙航, 王文达, 等. 高温作用下钢管混凝土构件侧向撞击性能[J]. 爆炸与冲击, 2020, 40(4):1-13.
SHI Yanli, JI Sunhang, WANG Wenda, et al. The lateral impact performance of concrete-filled steel tubular (CFST) members at high temperatures[J]. Explosion and Shock Waves, 2020, 40(4):1-13.
[29] Zhu Y, Yang H, Yang X Q, et al. Behavior of concrete-filled steel tubes subjected to axial impact loading[J]. Journal of Constructional Steel Research, 2020, 173:106245.
[30] Wan C Y, Zha X X, Mawulé Dassekpo J B. Analysis of axially loaded concrete filled circular hollow double steel tubular columns exposed to fire[J]. Fire Safety Journal, 2017, 88:1–12.
[31] Zhu X, Zhao P J, Tian Y, et al. Experimental study of RC columns and composite columns under low-velocity impact[J]. Thin-Walled Structures, 2020, 160:107374.
[32] 纪孙航, 王文达, 鲜威. CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究[J]. 工程力学, 2021, 38(8):178-191.
JI Sunhang, WANG Wenda, XIAN Wei. Lateral impact behavior of CFRP-reinforced circular concrete-filled steel tubular members after exposure to fire. Engineering Mechanics, 2021, 38(8):178-191.

PDF(2992 KB)

380

Accesses

0

Citation

Detail

段落导航
相关文章

/