黏弹性Pasternak地基上两跨连续Timoshenko梁横向自振特性分析

余云燕1,付艳艳1,张伟2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 1-10.

PDF(1220 KB)
PDF(1220 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 1-10.
论文

黏弹性Pasternak地基上两跨连续Timoshenko梁横向自振特性分析

  • 余云燕1,付艳艳1,张伟2
作者信息 +

Analysis of transverse natural frequency of two-span continuous Timoshenko beam on viscoelastic Pasternak foundation

  • YU Yunyan1, FU Yanyan1, ZHANG Wei2
Author information +
文章历史 +

摘要

以黏弹性Pasternak地基上的Timoshenko梁为研究对象,研究其在两端简支、两端固支、简支-固支边界条件下的单跨地基梁及两跨连续地基梁(等跨和不等跨两种工况)的自振频率、衰减系数和模态。基于回传射线矩阵法,根据各种约束条件下的节点耦合条件,推导横向振动频率方程,通过观察两跨连续地基梁与单跨地基梁的频率方程,并通过具体算例,研究两跨连续地基梁与单跨地基梁自振频率之间的联系与区别,进一步给出前三阶模态。结果表明:两等跨连续地基梁自振频率方程可分为两个部分,且这两部分分别与两端简支和简支-固支边界条件下单跨地基梁的频率方程形式类同;其奇数阶自振频率与两端简支边界条件下单跨地基梁的偶数阶自振频率相等,而其偶数阶自振频率则与两端固支边界条件下单跨地基梁的偶数阶自振频率相同;不等跨的两跨连续Timoshenko地基梁的模态函数曲线幅值随阶数的增加降低最快。

Abstract

Timoshenko beams on viscoelastic Pasternak foundations are studied for their self-vibration frequencies, attenuation coefficients and modalities for single-span foundation beams and two-span continuous foundation beams (both equal-span and unequal-span conditions) under classical boundary conditions including two-end simply supported, two-end fixed, simply supported-fixed. Based on the method of reverberation-ray matrix, the transverse vibration frequency equations are derived based on the nodal coupling conditions under various constraints. By observing the frequency equations of two-span continuous foundation beams and single-span foundation beams, and by using specific arithmetic examples, the connection and difference between the self-vibration frequencies of two-span continuous foundation beams and single-span foundation beams are investigated, and the first three orders of modes are further given. The results show that the frequency equation for a two-span continuous foundation beam can be divided into two parts, which are similar in form to the frequency equation for a single-span foundation beam under simply-supported and simply-supported-solidly-supported boundary conditions at both ends, respectively. The amplitude of the modal function curve for a two-span continuous Timoshenko foundation beam with unequal spans decreases fastest with increasing order.

关键词

两跨连续地基梁 / 黏弹性Pasternak地基 / Timoshenko梁 / 回传射线矩阵法 / 自振特性

Key words

two-span continuous foundation beam / Timoshenko beam / viscoelastic Pasternak foundation / method of reverberation-ray matrix (MRRM) / free vibration characteristics

引用本文

导出引用
余云燕1,付艳艳1,张伟2. 黏弹性Pasternak地基上两跨连续Timoshenko梁横向自振特性分析[J]. 振动与冲击, 2023, 42(11): 1-10
YU Yunyan1, FU Yanyan1, ZHANG Wei2. Analysis of transverse natural frequency of two-span continuous Timoshenko beam on viscoelastic Pasternak foundation[J]. Journal of Vibration and Shock, 2023, 42(11): 1-10

参考文献

[1] 丁祖德, 付江, 刘新峰, 等. 考虑空间效应的岩堆体隧道管棚力学模型研究[J]. 铁道学报, 2018, 40(7): 121-127.
DING Zu-de, FU Jiang, LIU Xin-Feng, et al. Study of mechanical model for pipe roof in talus tunnel considering spatial effect [J]. Journal of the China Railway Society, 2018, 40(7): 121-127.
[2] 黄龙, 盛煜, 胡晓莹, 等. 基于弹性地基梁理论的冻胀作用下管道应力分析[J]. 冰川冻土, 2018, 40(1): 70-78.
HUANG Long, SHENG Yu, HU Xiao-ying, et al. Stress analysis of pipelines subjected to frost heave based on the theory of elastic foundation beam [J]. Journal of Glaciology and Geocryology, 2018, 40(1): 70-78.
[3] 刘希成. 弹性地基梁理论在软弱地基柱下条形基础中的应用[J]. 煤炭工程, 2015, 47(12): 25-27.
LIU Xi-cheng. Application of elastic foundation beam theory in strip foundation under column of soft ground [J]. Coal Engineering, 2015, 47(12): 25-27.
[4] 白海峰. 基于连续弹性地基梁的轨枕静力响应研究[J]. 铁道工程学报, 2007, (5): 22-27.
BAI Hai-feng. Research on the static response of tie on continuous elastic grade beam [J]. Journal of Railway Engineering Society, 2007, (5): 22-27.
[5] Chen C N. Vibration of prismatic beam on an elastic foundation by the differential quadrature element method [J]. Computers and Structures, 2000, 77(1): 1-9.
[6] 楼梦麟, 沈霞. 弹性地基梁振动特性的近似分析方法[J]. 应用力学学报, 2004, 21(3):149-152+170.
LOU Meng-lin, SHEN Xia. An approach for analyzing dynamic characteristic of reinforced concrete beam on elastic foundation [J]. Chinese Journal of Applied Mechanics, 2004, 21(3):149-152+170.
[7] 丁虎, 陈立群. Pasternak地基梁受迫振动行波解[J]. 中国科学: 物理学 力学 天文学, 2013, 43(4): 564-571.
DING Hu, CHEN Li-Qun. Forced vibration of beam on Pasternak foundation: A wave evolution analysis [J]. Scientia Sinice: Physica, Mechanica & Astronomica, 2013, 43(4): 564-571.
[8] Caliò I, Greco A. Free vibrations of Timoshenko beam-columns on Pasternak foundations [J]. Journal of Vibration and Control, 2013, 19(5): 686-696.
[9] 彭丽, 丁虎, 陈立群. 黏弹性三参数地基上Timoshenko梁横向自由振动[J]. 噪声与振动控制, 2013, 33(5): 107-110+188.
PENG Li, DING Hu, CHEN Li-qun. Transverse Free Vibration of a Timoshenko Beam Rested on Transverse Free Vibration of a Timoshenko Beam Rested on Three-parameter Viscoelastic Foundation [J]. Noise and Vibration Control, 2013, 33(5): 107-110+188.
[10] 彭丽, 丁虎, 陈立群. 黏弹性三参数地基梁横向自由振动[J]. 振动与冲击, 2014, 33(1): 101-105.
PENG Li, DING Hu, CHEN Li-qun. Transverse free vibration of a beam resting on a three-parameter viscoelastic foundation [J]. Journal of Vibration and Shock, 2014, 33(1): 101-105.
[11] 付艳艳, 余云燕. 黏弹性Pasternak地基上两端简支的Timoshenko梁横向自由振动特性解析解[J]. 振动与冲击, 2020, 39(19): 32-38.
FU Yan-yan, YU Yun-yan. Analytical solution to transverse free vibration characteristics of a simply supported Timoshenko beam on viscoelastic Pasternak foundation [J]. Journal of Vibration and Shock, 2020, 39(19): 32-38.
[12] 付艳艳, 余云燕. 黏弹性Winkler地基上Bernoulli-Euler梁横向自振特性[J]. 兰州交通大学学报, 2020, 39(6): 21-25+31.
FU Yan-yan, YU Yun-yan. Transverse Natural Vibration Characteristics of Bernoulli-Euler Beam on Viscoelastic Winkler Foundation [J]. Journal of Lanzhou Jiaotong University, 2020, 39(6): 21-25+31.
[13] 付艳艳, 余云燕. 经典边界条件黏弹性Pasternak地基上Bernoulli-Euler梁横向自振特性分析[J]. 振动与冲击, 2021, 40(1): 173-182.
FU Yan-yan, YU Yun-yan. Transverse free vibration characteristics of Bernoulli-Euler beam on viscoelastic Pasternak foundation under classical boundary conditions [J]. Journal of Vibration and Shock, 2021, 40(1): 173-182.
[14] 吴晶, 袁向荣. 两等跨连续梁的模态分析试验[J]. 长春工程学院学报(自然科学版), 2012, 13(1): 1-2+26.
WU Jing, YUAN Xiang-rong. Experiment of modal analysis to two-span continuous beams [J]. Journal of Changchun Institute of Technology (Natural Science Edition), 2012, 13(1): 1-2+26.
[15] 郑仰坤, 袁向荣. 不同跨径比的两跨连续梁的模态分析试验[J]. 噪声与振动控制, 2014, 34(4): 148-152.
ZHENG Yang-kun, YUAN Xiang-rong. Modal analysis test of a two-unequal-span continuous beam [J]. Noise and Vibration Control, 2014, 34(4): 148-152.
[16] Li F M, Song Z G. Vibration analysis and active control of nearly periodic two-span beams with piezoelectric actuator/sensor pairs [J]. Applied Mathematics and Mechanics, 2015, 36(3): 279-292.
[17] 张盼, 袁向荣, 刘辉, 等. 基于视频图像法的两跨连续梁振动研究[J]. 实验技术与管理, 2016, 33(12): 48-52+55.
ZHANG Pan, YUAN Xiang-rong, LIU Hui, et al. Research on vibration of two-span continuous beam based on video image method [J]. Experimental Technology and management, 2016, 33(12): 48-52+55.
[18] 周盛林, 李凤明. 失谐连续双跨梁结构振动特性的理论和实验研究[J]. 振动工程学报, 2017, 30(1): 149-154.
ZHOU Sheng-lin, LI Feng-ming. Theoretical and experimental studies on the vibration characteristics of disordered two-span beams [J]. Journal of Vibration Engineering, 2017, 30(1): 149-154.
[19] 吴晓. 求双跨连续梁临界载荷及固有频率的新方法[J]. 工程与试验, 2019, 59(04): 5-6.
WU Xiao. New method for calculating the critical load and natural frequency of two-span continuous beam [J]. Engineering and Test, 2019, 59(4): 5-6.

PDF(1220 KB)

423

Accesses

0

Citation

Detail

段落导航
相关文章

/