隧道衬砌混凝土/岩石组合体动力学特性数值模拟研究

高欢1,翟越1,2,汪铁楠1,谢怡帆1,李艳1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 107-114.

PDF(3432 KB)
PDF(3432 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 107-114.
论文

隧道衬砌混凝土/岩石组合体动力学特性数值模拟研究

  • 高欢1,翟越1,2,汪铁楠1,谢怡帆1,李艳1,2
作者信息 +

Numerical Simulation of Dynamic Characteristics of Tunnel Lining Concrete/Rock Interface

  • GAO Huan1, ZHAI Yue1,2, WANG Tienan1, XIE Yifan1, LI Yan1,2
Author information +
文章历史 +

摘要

为探讨混凝土-花岗岩组合体的动态破坏机理,采用 LS-DYNA 软件建立分离式霍普金森(SHPB)压杆数值模型,模拟了组合体在不同冲击荷载、主动围压、节理接触面积(JMC)、锯齿形状和界面倾角下的 - 关系、强度特性和能量特性。结果表明:组合体的抗压强度与围压、JMC 和冲击压强呈正相关,随界面倾角 α 的增大(0→90°)呈“U”形变化,倾角 α 接近材料破坏角 45°时组合体破坏最严重,耗散能最大;界面的存在使得应力波在混凝土-岩石试件中传播更为复杂,组合体动态峰值抗压强度的大小主要取决于混凝土,具有明显的应变率、围压增强效应;同一入射能作用下,其值接近组合材料屈服极限时,混凝土-花岗岩、花岗岩-混凝土组合体和混凝土单体的反射能接近,相比混凝土单体,波阻抗大的岩单体透射能大,吸收能小;组合体破碎形态主要表现为混凝土的劈裂和压剪破坏。研究结果有助于理解组合岩层的动态破坏规律。

Abstract

In order to study the dynamic failure mechanism of concrete-rock combined body, the split Hopkinson (SHPB) pressure bar numerical model was established by LS-DYNA software.The relationship between curves of   - , the strength and energy characteristics of the combined body with different impact load, active confining pressure, joint contact area, shape and rock dip angle were analyzed. The results show that: among the above five factors, the interaction between rock dip angle and peak stress was the strongest, which satisfied the power function relationship. When the rock dip angle was close to the material failure angle of 45°, the combined body failure was more serious, and the dissipation energy was the largest; the existence of interface made the propagation of stress wave in concrete rock specimen became more complex, and the dynamic peak strength of the combined body mainly depended on the concrete. Under the same incident energy, the reflection energy of concrete-granite, granite-concrete samples and concrete monomer was more closer. Compared with the concrete monomer, the transmission energy of rock monomer with high wave resistance was larger, and the absorption energy was smaller. The fracture morphology of composite was mainly manifested by splitting and compression shear failure of concrete. It is helpful to understand the dynamic failure law of rock strata.

关键词

岩石力学 / 混凝土 / 组合体 / 有限元模拟 / SHPB / 动态压缩性能

Key words

Rock mechanics / Concrete / Composite / Finite element simulation / SHPB;Dynamic compression performance

引用本文

导出引用
高欢1,翟越1,2,汪铁楠1,谢怡帆1,李艳1,2. 隧道衬砌混凝土/岩石组合体动力学特性数值模拟研究[J]. 振动与冲击, 2023, 42(11): 107-114
GAO Huan1, ZHAI Yue1,2, WANG Tienan1, XIE Yifan1, LI Yan1,2. Numerical Simulation of Dynamic Characteristics of Tunnel Lining Concrete/Rock Interface[J]. Journal of Vibration and Shock, 2023, 42(11): 107-114

参考文献

[1] 宋德彰, 孙钓. 锚喷支护力学机理的研究[J]. 岩石力学与工程学报, 1991, 10(2): 197-204. (Song Dezhang, Sun Diao. Study on mechanical mechanism of bolt shotcrete support [J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(2): 197-204. (in Chinese)).
[2] Lamis Ahmed, Anders Ansell. Structural dynamic and stress wave models for the analysis of shotcrete on rock exposed to blasting[J]. Engineering Structures, 2012, 35, 11-17.
[3] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J].振动与冲击, 2020, 39(13): 176-183+214. (Ji Jiejie, Li Hongtao, Wu Faming, et al. Fractal characteristics of rock fragmentation under impact load[J]. Journal of Vibration and Shock, 2020, 39(13): 176-183+214. (in Chinese))
[4] 杜超超, 温森, 孔庆梅. 一维动静组合加载下组合岩样动态力学特性试验研究[J].振动与冲击, 2021, 40(21):168-178+206. (Du Chaochao, Wen Sen, Kong Qingmei. Tests for dynamic mechanical properties of composite rock samples under 1-D dynamic-static combined loading [J]. Journal of Vibration and Shock, 2020, 39(13): 176-183+214. (in Chinese))
[5] 杨仁树, 李炜煜, 方士正, 等. 波阻抗对岩石动力学特性影响的模拟试验研究[J].振动与冲击, 2020,39(03):178-185. (Yang Renshu, Li Weiyu, Fang Shizheng, et al. Tests for effects of wave impedance on rock's dynamic performance [J]. Journal of Vibration and Shock, 2020,39(03):178-185. (in Chinese))
[6] 方秦, 洪建,张锦华,等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(05): 1-14+26. (Fang Qin,Hong Jian,Zhang Jinhua, et al. Discussion on some problems of SHPB experiment of concrete materials [J]. Engineering Mechanics, 2014, 31(05): 1-14 + 26(in Chinese)).
[7] LI Yan, ZHAI Yue, LIU Xuyang, et al. Research on Fractal Characteristics and Energy Dissipation of Concrete Suffered Freeze-Thaw Cycle Action and Impact Loading. Materials, 2019, 12, 2585.
[8] 谢和平, 陈忠辉, 易成, 等. 基于工程体-地质体相互作用的接触面变形破坏研究[J]. 岩石力学与工程学报, 2008(09): 1767-1780. (Xie Heping, Chen Zhonghui, Yi Cheng, et al. Research on deformation and ffailure of interface based on interaction between structural body and geo-body [J]. Chinese Journal of Rock Mechanics and Engineering, 2008(09): 1767-1780. (in Chinese)).
[9] 王兵武,李银平,杨春和,等. 界面倾角对组合层状物理模型材料力学特性的影响研究[J]. 岩土力学,2015, 36(S2): 139-147. (WANG Bingwu, LI Yinping, YANG Chunhe, et al. Influence of interface dip angle on mechanical properties of composite layered physical model materials [J]. Rock and Soil Mechanics, 2015, 36 (S2): 139-147(in Chinese)).
[10] Selçuk L, Aşma D. Experimental investigation of the Rock–Concrete bi materials influence of inclined interface on strength and failure behavior[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104119.
[11] 陈猛, 崔秀文, 颜鑫, 等. 岩石-钢纤维混凝土组合层抗压强度预测模型[J]. 岩土力学, 2021, 42(03): 638-646. (Chen Meng, Cui Xiuwen, Yan Xin, et al. Prediction model for compressive strength of rock-steel fiber reinforced concrete composite layer [J]. Rock and Soil Mechanics, 2021, 42(03): 638-646.(in Chinese))
[12] 周辉,宋明,张传庆,等. 水平层状组合岩体变形破坏特征的围压效应研究[J]. 岩土力学, 2019, 40(02): 465-473. (Zhou Hui, Song Ming, Zhang Chuanqing, et al. Study on confining pressure effect of deformation and failure characteristics of horizontal layered composite rock mass[J]. Rock and Soil Mechanics, 2019, 40 (02): 465-473(in Chinese)).
[13] M.Torsæter, J.Todorovic, A.Lavrov. Structure and debonding at cement-steel and cement-rock interfaces: effect of geometry and materials[J]. Construction and Building Materials, 2015,96: 164–171.
[14] HONG Li, Gu Xianglin, Lin Fin. Influence of aggregate surface roughness on mechanical properties of interface and concrete[J]. Construction and Building Materials, 2014, 65: 338–349.
[15] Chen Xiaobin, Zhang Jiasheng, Xiao Yuanjie. Effect of roughness on shear behavior of red clay-concrete interface in large-scale direct shear tests[J]. Canadian Geotechnical Journal, 2015, 52(8): 1122–1135.
[16] 王明年, 胡云鹏, 童建军, 等 . 高温变温环境下喷射混凝土–岩石界面剪切特性及温度损伤模型研究[J].岩石力学与工程学报, 2019, 38(01): 63-75.( Wang Mingnian, Hu Yunpeng,Tong Jianjun, et al. Study on shear characteristics and temperature damage model of shotcrete rock interface under high temperature and variable temperature environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(01): 63-75(in Chinese)).
[17] 李夕兵, 陈寿如. 应力波在层状矿岩结构中传播的新算法[J]. 中南矿冶学院学报, 1993(06): 738-742. (Li Xibing, Chen Shouru. A new algorithm for stress wave propagation in layered ore and rock structure[J]. Journal of Central South University of mining and metallurgy, 1993, 06: 738-742(in Chinese)).
[18] 闫鹏洋. 喷层混凝土与围岩组合体动力性状及损伤破坏特性研究[D]. 中国矿业大学(北京),2018. ( Yan Pengyang. Study on dynamic properties and damage failure characteristics of shotcrete and surrounding rock combination[D]. China University of mining and Technology (Beijing), 2018(in Chinese)).
[19] Gong Fengqiang, YE Hao, LUO Yong. The Effect of high loading rate on the behaviour and mechanical properties of Coal-Rock combined body[J]. Shock and Vibration, 2018, 4374530: 1–12.
[20] Wen S, Zhang C, Chang Y, et al. Dynamic compression characteristics of layered rock mass of significant strength changes in adjacent layers[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(2): 353-365.
[21] 石蕴美. 混凝土高温后冲击压缩性能试验及数值模拟研究[D]. 长安大学, 2017.(SHI Yunmei. Experimental and numerical simulation study on impact compression performance of concrete after high temperature[D]. Chang'a University, 2017(in Chinese)).
[22] 陈博斐, 邱欣, 陈江瑛. 混凝土SHPB束杆装置冲击实验的数值仿真[J]. 应用力学学报, 2017, 34(01): 125-130+201. (Chen Bofei,Qiu Xin,Chen Jiangying. Numerical simulation of impact experiment of concrete SHPB beam device[J]. Chinese Journal of Applied Mechanics, 2017, 34(01): 125-130+201(in Chinese)).
[23] 左宇军, 唐春安, 朱万成, 等. 岩石类介质SHPB试验加载波形的数值分析[J].东北大学学报(自然科学版). 2007,06: 859-862. (Zuo Yujun, Tang Chunan, Zhu Wancheng, et al. Numerical analysis of loading waveform of rock medium SHPB test[J]. Journal of Northeastern University(Natural Science), 2007, 06: 859-862(in Chinese)).
[24]  孙广忠.岩体结构力学[M].北京:科学出版社,1988: 216 -221. (SUN Guangzhong. Structure mechanics of rock mass[M].Beijing: Science Press,1988:216 - 221. (in Chinese)).
[25] 郭东明, 闫鹏洋, 张英实, 等. 喷层混凝土-围岩组合体的循环冲击压缩试验研究[J].振动与冲击, 2019,38(10):105-111. (Guo Dongming,Yan Pengyang, Zhang Yingshi, et al. Experimental research on the sprayed concrete-surrounding rock combined body subjected to cyclic impact loadings [J]. Journal of Vibration and Shock, 2019,38(10):105-111 (in Chinese)).
[26] 杨仁树, 李炜煜, 方士正, 等. 层状组合岩体冲击动力学特性试验研究[J]. 岩石力学与工程学报, 2019, 38(09): 1747-1757. (Yang Renshu, Li Weiyu, Fang Shizheng, et al. Experimental study on impact dynamic characteristics of layered composite rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(09): 1747-1757(in Chinese)).
[27] 李业学, 谢和平, 朱哲明, 等. 应力波穿越分形节理时的透反射规律研究[J]. 岩石力学与工程学报,2009, 28(01): 120-129.(Li Yexue,Xie Heping,Zhu Zheming, et al. Study on the law of transmission and reflection of stress wave passing through fractal joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(01): 120-129(in Chinese)).
[28] 王礼立. 应力波基础[M].北京: 国防工业出版社, 1985.(Wang Lili. Stress wave foundation[M]. Beijing: National defense industry press, 1985(in Chinese)

PDF(3432 KB)

Accesses

Citation

Detail

段落导航
相关文章

/