高液压水体中近壁面空化气泡坍塌的动力学特性研究

廖斌,杨在贺,卜洋,陈善群

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 11-18.

PDF(2407 KB)
PDF(2407 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 11-18.
论文

高液压水体中近壁面空化气泡坍塌的动力学特性研究

  • 廖斌,杨在贺,卜洋,陈善群
作者信息 +

Dynamic characterization of a singlenear-wall cavitation bubble collapses in ahigh-hydraulic water body

  • LIAO Bin, YANG Zaihe, BU Yang, CHEN Shanqun
Author information +
文章历史 +

摘要

基于6方程多相流模拟理论并结合Keller–Miksis方程半解析解进行对比验证,建立了适用于研究高液压水体中近壁面空化气泡坍塌问题的数值模型。选取周围水体p∞ = 106Pa、p∞ = 107Pa、p∞ = 108Pa三种高液压工况以及S = 0.1R0、S = 0.4R0、S = 0.7R0、S = 1.1R0四种空化气泡与壁面之间间距工况对高液压水体中近壁面空化气泡坍塌的动力学特性进行系统探究。结合数值纹影、压力场无量纲化等后处理技术,对不同组合工况下空化气泡坍塌演变、压力波生成与传播以及壁面径向原点位置压力峰值进行了详细地对比分析,并深入揭示了周围水体液压以及气泡与壁面之间间距对于近壁面空化气泡坍塌动力学特性的影响规律和内在机理。

Abstract

Based on 6-equation multiphase flow simulation theory and combined with the comparative validation of semi-analytic solution of Keller-Miksis equation, a numerical model which is used to study the near-wall cavitation bubble collapse problem in a high-hydraulic pressure water body is established. Three high-hydraulic pressure conditions, p∞ = 106Pa, p∞ = 107Pa and p∞ = 108Pa, and four cavitation bubble-wall spacing conditions, S = 0.1R0, S = 0.4R0, S = 0.7R0 and S = 1.1R0, were selected to systematically investigate the dynamic characteristics of a single near-wall cavitation bubble collapses in a high-hydraulic pressure water body. Combined with the post-processing techniques, such as numerical schlieren and pressure field dimensionless, the collapse evolution of the cavitation bubble, the generation and propagation of the pressure waves, and the pressure peak at the radial origin of the wall under different working conditions were compared and analyzed in detail. The influence of the hydraulic pressure of the surrounding water and the spacing between the cavitation bubble and the wall on the collapse dynamics of the near-wall cavitation bubble was elaborated, and the internal mechanisms contained was also revealed.

关键词

空化气泡 / 坍塌 / 高液压 / 间距 / 压力波

Key words

cavitation bubble / collapse / high-hydraulic pressure / spacing / pressure wave

引用本文

导出引用
廖斌,杨在贺,卜洋,陈善群. 高液压水体中近壁面空化气泡坍塌的动力学特性研究[J]. 振动与冲击, 2023, 42(11): 11-18
LIAO Bin, YANG Zaihe, BU Yang, CHEN Shanqun. Dynamic characterization of a singlenear-wall cavitation bubble collapses in ahigh-hydraulic water body[J]. Journal of Vibration and Shock, 2023, 42(11): 11-18

参考文献

[1]  Lauer E, Hu X Y, Hickel S, et al. Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics [J]. Computers & Fluids, 2012, 69: 1–19.
[2]  Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. London Edinburgh Dublin Philosophical Magazine and Journal of Science Series, 1917, 34 (200): 94–98.
[3]  Hickling R, Plesset M S. Collapse and rebound of a spherical bubble in water [J]. Physics of Fluids, 1964, 7 (1): 7–14.
[4]  Benjamin T B, Ellis A T, Bowden F P. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries [J]. Philosophical Transactions of the Royal Society of London. Series A, 1966, 260 (1110): 221–240.
[5]  Plesset M S, Chapman R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary [J]. Journal of Fluid Mechanics, 1971, 47 (2): 283–290.
[6]  Pishchalnikov Y A, Sapozhnikov O A, Bailey M R, et al. Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves [J]. Journal of Endourology, 2003, 17 (7): 435–446.
[7]  Reuter F, Gonzalez-Avila S R, Mettin R, et al. Flow fields and vortex dynamics of bubbles collapsing near a solid boundary [J]. Physics Review Fluids, 2017, 2(6): 064202.
[8] Dijkink R, Ohl C D. Laser-induced cavitation based micropump [J]. Lab on a Chip, 2008, 8(10): 1676–1681.
[9] Veilleux J C, Maeda K, Colonius T. Transient cavitation in pre-filled syringes during autoinjector actuation [C]. In Proceedings of the 10th International Symposium on Cavitation CAV (ed. J. Katz), 2018, pp. 1068–1073.
[10] Falgout Z, Linne M. Cavitation inside high-pressure optically transparent fuel injector nozzles[J]. Journal of Physics: Conference Series, 2015, 656: 012082.
[11] Koukouvinis P, Karathanassis I K, Gavaises M. Prediction of cavitation and induced erosion inside a high-pressure fuel pump[J]. International Journal of Engine Research, 2017: 146808741770813.
[12] Kornfeld M, Suvorov L. On the destructive action of cavitation [J]. Journal of Applied Physics, 1944, 15: 495–506.
[13] Tomita Y, Shima A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse [J]. Journal of Fluid Mechanics, 1986, 169: 535–564.
[14] Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles [J]. Journal of Fluid Mechanics, 1998, 361: 75–116.
[15] Lindau O, Lauterborn W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall [J]. Journal of Fluid Mechanics, 2003, 479: 327–348.
[16] Zhang A M, Cui P, Wang Y. Experiments on bubble dynamics between a free surface and a rigid wall [J]. Experiments in Fluids, 2013, 54: 1602.
[17] 王诗平, 张阿漫, 吴超. 对称边界条件下气泡脉动特性实验研究[J]. 振动与冲击, 2014, 33(20): 118-122.
WANG Shi-ping, ZHANG A-man, WU Chao. Experimental study on characteristics of bubble pulsation near symmetric boundary [J]. Journal of vibration and shock, 2014, 33(20): 118-122.
[18] Wang S P, Chu W H, Zhang A M. Experimental study on bubble pulse features under the combined action of horizontal and vertical walls [J]. China Ocean Engineering, 2014, 28(3): 293-301.
[19] Iloreta J I, Fung N M, Szeri A J. Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave [J]. Part 1. Consequences of interference between incident and reflected waves. Journal of Fluid Mechanics, 2008, 616: 43–61.
[20] Johnsen E, Colonius T. Numerical simulations of non-spherical bubble collapse [J]. Journal of Fluid Mechanics, 629: 231–262.
[21] Müller S, Helluy P, Ballmann J. Numerical simulation of a single bubble by compressible two-phase fluids [J]. International Journal for Numerical Methods in Fluids, 2010, 62: 591–631.
[22] Popinet S, Zaleski S. Bubble collapse near a solid boundary: a numerical study of the influence of viscosity [J]. Journal of Fluid Mechanics, 2002, 464: 137–163.
[23] Sussman M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of a vapor bubble [J]. Journal of Computational Physics, 2003, 187(1): 110–136.
[24] Bryngelson S H, Schmidmayer K, Coralic V, et al. MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver[J]. Computer Physics Communications, 2021, 266: 107396.
[25] Saurel R, Petitpas F, Berry R A. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures [J]. Journal of Computational Physiscs, 2009, 228 (5): 1678–1712.
[26] Le Métayer O, Massoni J, Saurel R. Modelling evaporation fronts with reactive Riemann solvers [J]. Journal of Computational Physics, 2005, 205 (2): 567–610.
[27] Schnidmayer K, Petitpas F, Le Martelot S, et al. ECOGEN: an open-source tool for multiphase, compressible, multiphysics flows [J]. Computer Physics Communications, 2019, 251: 107093.
[28] Schmidmayer K, Petitpas F, Daniel E. Adaptive mesh refinement algorithm based on dual trees for cells and faces for multiphase compressible flows [J]. Journal of Computational Physics, 2019, 388: 252–278.
[29] Brennen C E. Cavitation and Bubble Dynamics [M]. Oxford University Press, USA, 1995.
[30] Keller J B, Miksis M. Bubble oscillations of large amplitude [J]. The Journal of the Acoustical Society of America, 1980, 68(2): 628–633.
[31] Quirk J J, Karni S. On the dynamics of a shock-bubble interaction [J]. Journal of Fluid Mechanics, 1996, 318: 129-163.
[32] Supponen O, Obreschkow D, Tinguely M, et al. Scaling laws for jets of single cavitation bubbles [J]. Journal of Fluid Mechanics, 2016, 802: 263–293.

PDF(2407 KB)

301

Accesses

0

Citation

Detail

段落导航
相关文章

/