针对具有高度非线性的电液伺服系统控制问题,提出了一种适用于伺服系统的摩擦模型,利用遗传算法对所建立的摩擦模型进行参数辨识,获得了精确的摩擦力矩数学模型,并将其作为前馈补偿加入非线性控制中,以减小摩擦非线性对电液伺服系统的影响。为解决伺服系统换向过程中易出现的抖振现象,设计了一种基于摩擦模型前馈补偿的模糊变系数自抗扰控制器。基于类双曲正弦函数设计了状态误差反馈控制部分,平滑切换点处的输出抖动,在此基础上结合模糊自适应控制方法,通过误差和误差微分对非线性状态反馈系数进行调节。研究表明上述控制策略能够有效提高系统响应速度、收敛速度、稳定性和鲁棒性,降低了对摩擦的过补偿、欠补偿的影响,对伺服系统换向和速度零点处的抖振具有较好的抑制作用。
Abstract
Aiming at the control problem of an electro-hydraulic servo system with high nonlinearity, a friction model suitable for the servo system is proposed. The parameters of the established friction model are identified by the genetic algorithm, and an accurate mathematical model of friction torque is obtained, which is added to the nonlinear control as a feedforward compensation to reduce the influence of friction nonlinearity on the electro-hydraulic servo system. To solve the chattering phenomenon that is easy to occur in the commutation process of the servo system, a fuzzy variable coefficient active disturbance rejection controller based on friction model feedforward compensation is designed. Based on the quasi-hyperbolic sine function, the state error feedback control part is devised to smooth the output jitter at the switching point. On this basis, combined with the fuzzy adaptive control method, the nonlinear state feedback coefficient is adjusted by error and error differential. The research shows that the above control strategy can effectively improve the response speed, convergence speed, stability, and robustness of the system, and reduce the influence of over-compensation and under-compensation on friction. It has a good inhibitory effect on the commutation of the servo system and the chattering at the zero point of the speed.
关键词
自抗扰 /
摩擦 /
补偿 /
模糊自适应 /
辨识
{{custom_keyword}} /
Key words
active disturbance rejection /
friction /
compensation /
fuzzy self-adaptation /
identification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Peng B, Bergs T, Schraknepper D, et al. Development and validation of a new friction model for cutting processes[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(11): 4357-4369.
[2] Lee C Y, Hwang S H, Nam E, et al. Identification of mass and sliding friction parameters of machine tool feed drive using recursive least squares method[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(9): 2831-2844.
[3] Tasora A, Anitescu M. A complementarity-based rolling friction model for rigid contacts[J]. Meccanica, 2013, 48(7): 1643-1659.
[4] Zhang C, Lu J, Zhang F, et al. Identification of a new friction model at tool-chip interface in dry orthogonal cutting[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1): 921-932.
[5] Farrage A, Uchiyama N. Improvement of motion accuracy and energy consumption of a mechanical feed drive system using a Fourier series-based nonlinear friction model[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(5): 1203-1214.
[6] Lu Y, Zhang J, Yang S, et al. Study on improvement of LuGre dynamical model and its application in vehicle handling dynamics[J]. Journal of Mechanical Science and Technology, 2019, 33(2): 545-558.
[7] 李文礼,陆宇,郭栋,刘永康,石晓辉,严海燕. 考虑时变啮合刚度的多惯量伺服系统机械谐振分析及抑制方法研究[J]. 振动与冲击, 2021, 40(19): 164-171+179.
LI Wen-li, LU Yu, GUO Dong, et al. Mechanical resonance analysis and suppression method of multi-inertia servo system considering time-varying meshing stiffness[J]. Journal of vibration and shock, 2021, 40(19): 164-171+179.
[8] 赵真,王碧,陈国平. 空间站大柔性太阳电池翼驱动装置的滑模伺服控制[J]. 振动与冲击, 2020, 39(03): 211-218+288.
ZHAO Zhen, WANG Bi, CHEN Guo-ping. Sliding mode servo control of a large flexible solar cell wing driving device[J]. Journal of vibration and shock, 2020, 39(03): 211-218+288.
[9] Cong S, Deng K, Shang W, et al. Isolation control for inertially stabilized platform based on nonlinear friction compensation[J]. Nonlinear Dynamics, 2016, 84(3): 1123-1133.
[10] Yue F, Li X. Adaptive sliding mode control based on friction compensation for opto-electronic tracking system using neural network approximations[J]. Nonlinear Dynamics, 2019, 96(4): 2601-2612.
[11] Li C, Chen Z, Yao B. Identification and adaptive robust precision motion control of systems with nonlinear friction[J]. Nonlinear Dynamics, 2019, 95(2): 995-1007.
[12] Tu X, Zhou Y F, Zhao P, et al. Modeling the static friction in a robot joint by genetically optimized BP neural network[J]. Journal of Intelligent & Robotic Systems, 2019, 94(1): 29-41.
[13] 李雨青,南宫自军,刘博. 空气舵系统摩擦模型及参数识别方法研究[J]. 振动与冲击, 2021, 40(22): 98-103.
LI Yu-qing, NANGONG Zi-jun, LIU Bo. Friction model and parameter identification method for an air rudder system[J]. Journal of vibration and shock, 2021, 40(22): 98-103.
[14] Baeza J R, Garcia C. Friction compensation in pneumatic control valves through feedback linearization[J]. Journal of Control, Automation and Electrical Systems, 2018, 29(3): 303-317.
[15] Hua X, Huang D, Guo S. Extended state observer based on ADRC of linear system with incipient fault[J]. International Journal of Control, Automation and Systems, 2020, 18(6): 1425-1434.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}