基于优化时谱图神经网络的电力系统多元混沌时间序列预测

卢英东,韦笃取

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 156-162.

PDF(1221 KB)
PDF(1221 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 156-162.
论文

基于优化时谱图神经网络的电力系统多元混沌时间序列预测

  • 卢英东,韦笃取
作者信息 +

Chaotic time series prediction of power system by using optimized time spectrum neural network

  • LU Yingdong, WEI Duqu
Author information +
文章历史 +

摘要

电力系统是强耦合、多变量系统,对其多元混沌时间序列预测是当前研究难点。本文提出了一种基于优化的时谱图神经网络,用于电力系统的混沌预测。首先利用潜在相关层挖掘多元时间序列之间的相关性,然后通过序列转换单元将时间序列转换为频域信号并学习其特征,最后结合多种算法优化模型实现更好的预测效果。实验表明经优化后的时谱图神经网络不仅能对电力系统的多状态变量进行混沌预测,而且比其他参考模型具有更高的预测精度和稳定性。

Abstract

Power system is a strong coupling and multivariable system, and the prediction of its multivariate chaotic time series is a difficult problem at present. In this paper, a time spectrum neural network based on optimization is proposed for chaos prediction of power system. Firstly, the potential correlation layer is used to mine the potential correlation between multivariate time series, and then the time series are converted into frequency domain signals through the sequence conversion unit to learn their characteristics. Finally, a variety of algorithms are combined to optimize the model to achieve better prediction effect. Experimental results illustrated that the optimized time spectrum neural network can not only predict the multivariable chaos of power system, but also has higher prediction accuracy and stability than other baseline models.

关键词

神经网络 / 电力系统 / 混沌 / 多元时间序列预测 / 优化算法

Key words

neural network / power system / chaos / multivariate time series prediction / optimization algorithm

引用本文

导出引用
卢英东,韦笃取. 基于优化时谱图神经网络的电力系统多元混沌时间序列预测[J]. 振动与冲击, 2023, 42(11): 156-162
LU Yingdong, WEI Duqu. Chaotic time series prediction of power system by using optimized time spectrum neural network[J]. Journal of Vibration and Shock, 2023, 42(11): 156-162

参考文献

[1] Ni J, Liu L, Liu C, et al. Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system[J]. Nonlinear Dynamics, 2016, 86(1): 401-420.
[2] 张海库,陈启卷,郑阳,耿清华,王亮. 应用阻尼坎的大型水电机组有功振荡抑制方法[J]. 振动与冲击, 2021, 40(17): 183-188.
ZHANG Haiku, CHEN Qijuan, ZHENG Yang, GENG Qinghua, WANG Liang. Active power oscillation suppression method of large hydropower unit with damping sil. Journal of Vibration and Shock, 2021, 40(17): 183-188.
[3] Wan, R, Mei, S, Wang, J, et al. Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting[J]. Electronics, 2019, 8(8), 876-894.
[4] Malhotra P, Vig L, Shroff G, Agarwal P. (2015, April). Long short term memory networks for anomaly detection in time series[C]. Proceedings, 2015, 89: 89-94.
[5] 陈豪昌, 韦笃取. 基于储备池计算的电机系统混沌预测与同步研究[J]. 振动与冲击,2021, 40 (16):199-203.
CHEN Haochang, WEI Duqu. Chaos prediction and synchronization of motor system based on reservoir computing[J]. Vibration and shock, 2021, 40 (16):199-203.
[6] Zhang L, Aggarwal C, Qi G J. Stock price prediction via discovering multi-frequency trading patterns[C]. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017, 23(1): 2141-2149.
[7] Zhang, Q, Chang, J, Meng G, et al. Spatio-temporal graph structure learning for traffic forecasting[C]. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34:1177-1185.
[8] 韩敏, 许美玲. 一种基于误差补偿的多元混沌时间序列混合预测模型[J]. 物理学报, 2013,62(12):106-112.
Han Min, Xu Meiling. Acta Phys. Sin A hybrid prediction model of multivariate chaotic time series based on error compensation, 2013, 62(12):106-112.
[9] Wu Z, Pan S, Long G, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, 26:753-763.
[10] Dutta A, Kumar S, Basu M. A gated recurrent unit approach to bitcoin price prediction[J]. Journal of Risk and Financial Management, 2020, 13(2): 23-39.
[11] Deng W, Liu H, Xu J, et al. An improved quantum-inspired differential evolution algorithm for deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10), 7319-7327.
[12] Zhang C, Ding S. A stochastic configuration network based on chaotic sparrow search algorithm[J]. Knowledge-Based Systems, 2021, 220(23): 106924.
[13] Wahid F, Ghazali R. Hybrid of firefly algorithm and pattern search for solving optimization problems[J]. Evolutionary Intelligence, 2019, 12(1): 1-10.
[14] 梅春草, 韦笃取. 基于时间加权反馈控制的永磁同步风力发电机混沌振荡研究[J]. 振动与冲击, 2020, 39(2): 79-86.
MEI Chuncao, WEI Duqu. Chaos control in permanent magnet synchronous generators based on time-weighted feedback control[J]. Vibration and shock, 2020, 39 (2): 79-86.
[15] Ji W, Venkatasubramanian V. Hard-limit induced chaos in a fundamental power system model[J]. International Journal of Electrical Power & Energy Systems, 1996, 18(5): 279-295.
[16] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]. Advances in neural information processing systems, 2014, 25: 3104-3112.
[17] Lai G, Chang W C, Yang Y, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018, 41: 95-104.

PDF(1221 KB)

Accesses

Citation

Detail

段落导航
相关文章

/