新型十字形负泊松比蜂窝结构的抗冲击性能

刘涛1,肖正明1,黄江成1,刘卫标2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 183-192.

PDF(5079 KB)
PDF(5079 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 183-192.
论文

新型十字形负泊松比蜂窝结构的抗冲击性能

  • 刘涛1,肖正明1,黄江成1,刘卫标2
作者信息 +

Impact resistance of new cross negative Poisson’s ratio honeycomb structure

  • LIU Tao1, XIAO Zhengming1, HUANG Jiangcheng1, LIU Weibiao2
Author information +
文章历史 +

摘要

负泊松比力学超材料具有高可设计性、轻量化以及抗冲击方面的优势,引起学者们的关注,对内凹六边形结构、手性结构等经典构型进行了广泛研究。提出了一种新型的十字形负泊松比蜂窝结构,基于能量法对该结构泊松比的解析式进行了推导,所得解析解与有限元结果吻合良好,证明了推导方法的有效性;针对不同冲击速度和不同杆长比例系数的十字形蜂窝结构的变形模式、冲击载荷下的名义应力应变曲线以及能量吸收特性进行了研究。结果表明:杆长比例系数越小,泊松比越小;冲击速度和杆长比例系数会影响十字形蜂窝结构的变形模式、冲击载荷下的名义应力应变曲线和平台应力;十字形蜂窝结构的体吸能在中速冲击下会随应变增大出现增长加快现象,而高速冲击下体吸能增长趋势不再随应变增大出现加快但呈现出规律的波浪形增长。

Abstract

Negative Poisson's ratio mechanical metamaterials have attracted the attention of scholars because of their advantages in high designability, lightweight and impact resistance. Classical configurations such as concave hexagonal structure and chiral structure have been extensively studied. In this paper, a new type of cross negative Poisson's ratio honeycomb structure is proposed. Based on the energy method, the Poisson's ratio of the structure is derived. The analytical solution is in good agreement with the finite element results, which proves the effectiveness of the derivation method. The deformation mode, nominal stress-strain curve and energy absorption characteristics of cross honeycomb structure with different impact velocity and rod length ratio coefficient are studied. The results show that the smaller the ratio coefficient of rod length is, the smaller the Poisson's ratio is. The impact velocity and rod length ratio coefficient affect the deformation mode, the nominal stress-strain curve and the platform stress of the cross honeycomb structure under impact load. The body energy absorption of cross honeycomb structure will accelerate with the increase of strain at medium speed, while the growth trend of energy absorption is no longer accelerated with the increase of strain at high speed but shows regular wavy growth.

关键词

负泊松比 / 十字形蜂窝结构 / 能量法 / 变形模式 / 能量吸收

Key words

negative Poisson’s ratio / cross-shaped cellular structure / energy method / deformation modes / energy absorption

引用本文

导出引用
刘涛1,肖正明1,黄江成1,刘卫标2. 新型十字形负泊松比蜂窝结构的抗冲击性能[J]. 振动与冲击, 2023, 42(11): 183-192
LIU Tao1, XIAO Zhengming1, HUANG Jiangcheng1, LIU Weibiao2. Impact resistance of new cross negative Poisson’s ratio honeycomb structure[J]. Journal of Vibration and Shock, 2023, 42(11): 183-192

参考文献

[1] KSHETRIMAYUM R S. A brief intro to metamaterials [J]. IEEE Potentials, 2005, 23(5): 44-46.
[2] 任鑫,张相玉,谢亿民.负泊松比材料和结构的研究进展[J].力学学报, 2019, 51(03): 656-687.
REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019 ,51(03): 656-687.
[3] AEH L A. Treatise on the mathematical theory of elasticity[M]. New York: Cambridge University Press, 1927.
[4] GUNTON D J, Saunders G A. The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth[J]. Journal of Materials Science, 1972, 7(9): 1061-1068.
[5] 高玉魁.负泊松比超材料和结构[J].材料工程, 2021, 49(05): 38-47.
GAO Yukui. Auxetic metamaterials and structures[J]. Journal of Materials Engineering, 2021, 49(05): 38-47.
[6] WOJCIECHOWSKI K W. Two-dimensional isotropic system with a negative poisson ratio[J]. North-Holland, 1989, 137(1-2).
[7] LAKES R. Deformation mechanisms in negative Poisson’s ratio materials: Structural aspects[J]. Journal of Materials Science, 1991, 26(9): 2287-2292.
[8] QIU K P, WANG R Y, WANG Z, et al. Effective elastic properties of flexible chiral honeycomb cores including geometrically nonlinear effects[J]. Meccanica, 2018, 53(15).
[9] ZHAO C F, ZHOU Z T, LIU X X, et al. The in-plane stretching and compression mechanics of Negative Poisson’s ratio structures: Concave hexagon, star shape, and their combination[J], Journal of Alloys and Compounds, 2020, 859(2):157840.
[10] 刘海涛,王彦斌,张争艳.可调泊松比圆弧星型结构的参数化设计[J].中国机械工程, 2021, 32(18): 2211-2216.
LIU Haitao, WANG Yanbin, ZHANG Zhengyan. Parametrization design of arc-start-shaped structures with tunable Poisson’s ratio[J]. China Mechanical Engineering, 2021, 32(18): 2211-2216.
[11] 沈建邦,肖俊华.负泊松比可变弧角曲边内凹蜂窝结构的力学性能[J].中国机械工程, 2019, 30(17): 2135-2141.
SHEN Jianbang, XIAO Junhua. Mechanics properties of negetive Poisson’s ratio honeycomb structures with variable arc angle curved concave sides[J]. China Mechanical Engineering, 2021, 32(18): 2211-2216.
[12] ZHANG X L, TIAN R L, ZHANG Z W, et al. In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson’s ratio[J]. Thin-Walled Structures, 2021, 163.
[13] 王彦斌,刘海涛.负泊松比圆弧曲线蜂窝芯结构的力学分析[J].云南大学学报(自然科学版), 2020, 42(06): 1159-1165.
WANG Yanbin, LIU Haitao. Mechanical analysis of circular curve honeycomb core with negative Poisson’s ratio[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(6): 1159-1165.
[14] WANG N, DENG Q. Effect of Axial Deformation on Elastic Properties of Irregular Honeycomb Structure[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1-12.
[15] 张伟,侯文彬,胡平.新型负泊松比多孔吸能盒平台区力学性能[J].复合材料学报, 2015, 32(02): 534-541.
ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new Poisson’s ratio crush box with cellular struture in plateau stage[J]. Acta Materiae Compositae Sinica, 2015, 32(02): 534-541.
[16] 张新春,祝晓燕,李娜.六韧带手性蜂窝结构的动力学响应特性研究[J].振动与冲击, 2016, 35(08): 1-7+26.
ZHANG Xinchun, ZHU Xiaoyan, LI Na. A study of the dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(08): 1-7+26.
[17] 韩会龙,张新春.星形节点周期性蜂窝结构的面内动力学响应特性研究[J].振动与冲击, 2017, 36(23): 223-231.
HANG Huilong, ZHANG Xinchun. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017, 36(23): 223-231.
[18] 马芳武,梁鸿宇,赵颖,等.内凹三角形负泊松比材料的面内冲击动力学性能[J].振动与冲击, 2019, 38(17): 81-87+127.
MA Fangwu, LIANG Hongyu, ZHAO Ying, et al. In-plane impact dynamic performance of concave triangle material with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2019, 38(17): 81-87+127.
[19] 卢子兴,王欢,杨振宇,等.星型-箭头蜂窝结构的面内动态压溃行为[J].复合材料学报, 2019, 36(08): 1893-1900.
LU Zixing, WANG Huan, YANG Zhenyu, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica, 2019, 36(08): 1893-1900.
[20] ZHAO Y, ZHANG Q, LI Y W, et al. Theoretical, emulation and experimental analysis on auxetic re-entrant octagonal honeycombs and its applications on pedestrian protection of engine hood[J]. Composite Structures, 2021:113534.
[21] WEI L L, ZHAO X, YU Q, et al. Quasi-static axial compressive properties and energy absorption of star-triangular auxetic honeycomb[J]. Composite Structures, 2021, 267.
[22] GAO D W, WANG S H, ZHANG M Z, et al. Experimental and numerical investigation on in-plane impact behaviour of chiral auxetic structure[J]. Composite Structures, 2021, 267.
[23] 魏路路,余强,赵轩,等.内凹-反手性蜂窝结构的面内动态压溃性能研究[J].振动与冲击, 2021, 40(04): 261-269.
WEI Lulu, YU Qiang, ZHAO Xuan, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb[J]. Journal of Vibration and Shock, 2021, 40(04): 261-269.
[24] 沈建邦,肖俊华,梁希,等.负泊松比曲边内凹蜂窝结构的面内冲击动力学数值研究[J].中国机械工程, 2020, 31(16): 1998-2004.
SHEN Jianbang, XIAO Junhua, LIANG Xi, et al. Numerical study on in-plane impact dynamic of negative Poisson’s ratio honeycomb structures with curved concave sides[J]. China Mechanical Engineering, 2020, 31(16): 1998-2004.
[25] 任毅如,蒋宏勇,金其多,等.仿生负泊松比拉胀内凹蜂窝结构耐撞性[J].航空学报, 2021, 42(03): 314-324.
REN Yiru, JIANG Hongyong, JIN Qiduo, et al. Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson’s ratio[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(03): 314-324.
[26] 尤泽华,肖俊华,王美芬.弧边内凹蜂窝负泊松比结构的力学性能[J].复合材料学报: 1-11[2022-05-31].
YOU Zehua, XIAO Junhua, WANG Meifen. Mechanical properties of concave honeycomb structure with negative Poisson’s ratio[J]. Acta Materiae Compositae Sinica: 1-11[2022-05-31].
[27] Liu W, Wang N, Luo T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100(Jun.):84-91.
[28] Mousanezhad D, Ghosh R, Ajdari A, et al. Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening[J]. International Journal of Mechanical Sciences, 2014, 89:413-422.
[29] A Hönig, Stronge W J. In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8):1665-1696.
[30] Zou Z, Reid S R, Tan P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1):165-176.
[31] 虞科炯,徐峰祥,华林.正弦曲边负泊松比蜂窝结构面内冲击性能研究[J].振动与冲击,2021,40(13): 51-59.
YU Kejiong, XU Fengxiang, HUA Lin. In plane impact performance of honeycomb structure with sinusoidal
curved edge and negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2021, 40(13): 51-59.

PDF(5079 KB)

Accesses

Citation

Detail

段落导航
相关文章

/