针对集成补丁变换(Ensemble Patch Transformation, EPT)进行信号分解时易出现模态混淆和参数无法自适应的问题,论文提出一种基于自适应集成补丁变换(Adaptive Ensemble Patch Transformation, AEPT)的齿轮故障诊断方法。在AEPT分解过程中,首先通过极值约束获得若干个采样点,并以此完成信号局部划分,实现信号降噪;然后,结合极值点周期设置补丁参数,搭建集成补丁结构;最后,通过迭代和筛分将任意一个非线性非平稳信号自适应地分解为若干个瞬时频率具有物理意义的集成补丁分量(Ensemble Patch Component, EPC)。通过调幅仿真信号、齿轮故障仿真信号和实际齿轮裂纹信号进行实验验证,结果表明,AEPT方法在抑制模态混淆、鲁棒性等方面拥有明显的优势,可以有效的完成齿轮故障诊断。
Abstract
Signal decomposition for ensemble patch transformation(EPT) is prone to modal confusion and parameter inability to adapt, the paper proposes a gear fault diagnosis method based on adaptive ensemble patch transformation (AEPT). In the AEPT process, a number of sampling points are obtained through the extreme value constraint, and the signal is divided locally to achieve signal noise reduction; then, the patch parameters are set in combination with the extreme point period to build an integrated patch structure; finally, through iteration and screening, any nonlinear non-stationary signal is adaptively decomposed into several instantaneous frequency ensemble patch components (EPC) with physical significance. Through the amplitude modulation simulation signal, gear fault simulation signal and gear crack signal, the results show that the AEPT method has obvious advantages in suppressing modal aliasing and robustness, and can effectively diagnose gear fault.
关键词
自适应集成补丁变换 /
集成补丁分量 /
齿轮 /
故障诊断。
{{custom_keyword}} /
Key words
adaptive ensemble patch transformation /
ensemble patch Component /
Gears /
Troubleshooting
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 雷亚国,何正嘉,林京等.行星齿轮箱故障诊断技术的研究进展[J].机械工程学报,2011,47(19):59-67.
LEI Yaguo, HE Zhengjia, LIN Jing, et al. Research Progress on Fault Diagnosis Technology of Planetary Gearbox[J]. Chinese Journal of Mechanical Engineering, 2011, 47(19):59-67.
[2] 范博楠,王海斗,徐滨士等.强背景噪声下微弱声发射信号提取及处理研究现状[J].振动与冲击,2015,34(16):147-155.
FAN Bonan,WANG Haidou,XU Binshi,et al. Research status of extraction and treatment of weak acoustic emission signal under strong background noise[J].Vibration and Shock, 2015, 34(16): 147-155.
[3] WANG H C, CHEN J,DONG G M. Feature extraction of rolling bearing 's early week fault based on EEMD and tunableQ-factor wavelet transform [J]. Mechanical Systems and Signal Processing, 2014, 48(1/2): 103- 119.
[4] HOU T Y,YAN M P,WU Z. A varient of the EMD method for multi-scale data[ J ]. Advance in Adaptive Data Analysis, 2009,1(4):483 -516.
[5] 程军圣,郑近德,杨宇.一种新的非平稳信号分析方法—局部特征尺度分解法[J].振动工程学报,2012,25 (2):215 -220.
CEHNG Junsheng,ZHENG Jinde,YANG Yu. A new non-stationary signal analysis method——local feature scale decomposition method[ J].Journal of Vibration Engineering,2012,25(2):215-220.
[6] 杨宇,曾鸣,程军圣.局部特征尺度分解及其分量判据研究[J].中国机械工程,2013.24(02):195-201.
YANG Yu, ZENG Ming,CHENG Junsheng. A new time-frequency analysls method-the local characteristic-scale decomposition and its stopping criteria[J]. China Mechanical Engineering. 2013, 24(02): 195-201.
[7] 杨宇,曾鸣,程军圣.一种新的时频分析方法——局部特征尺度分解[J].湖南大学学报(自然科学版), 2012, 39(06):35-39.
YANG Yu,ZENG Ming,CHENG Junsheng,YANG Yu.A new time-frequency analysis method-the local characterical-scale decomposition [J]. Journal of Hunan University: Natrual Sciences Processing, 2006, 20(3):718-734.
[8] DRAGOMIRETSKIY K,ZOSSO D.Variational mode decomposition [J].IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[9] 胡茑庆,陈徽鹏,程哲等.基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J].机械工程学报,2019,55(07):9-18.
HU Mingqing, CHEN Huipeng, CHENG Zhe, et al. Fault diagnosis method of planetary gearbox based on empirical modal decomposition and deep convolutional neural network[J]. Journal of Mechanical Engineering, 2019, 55(07):9-18.
[10] ZHENG J D, PAN H Y. Mean-optimized mode decomposition: An improved EMD approach for non-stationary signal processing[J]. ISA Transactions, 2020,106: 392-401.
[11] LI H, LIU T, WU X, CHEN Q. An optimized VMD method and its applications in bearing fault diagnosis[J]. Measurement,2020,166: 108185.
[12] 李伟,罗成.基于VMD的行星齿轮箱故障特征提取新方法[J].噪声与振动控制,2020,40(03):94-99.
LI Wei,LUO Cheng. A New Method for Extracting Fault Characteristics of Planetary Gearbox Based on VMD[J].Noise and Vibration Control, 2020, 40(03):94-99.
[13] DONGHO K, GUEBIN C, HEE-SEOK O.Ensemble patch transformation: a flexible framework for decomposition and filtering of signal[J].Journal on Advances in Signal Processing, 2020, 2020(1):30.
[14] DONGHO K, HEE-SEOK O, GUEBIN C.EPT: An R package for ensemble patch transform[J]. softwareX, 2021,14:100704.
[15] 房贤水. 基于ESMD方法的模态统计特征研究[D]. 山东:青岛理工大学,2015.
Fang Xianshui. Study on Modal Statistical Characteristics Based on ESMD Method [D]. Shandong: Qingdao Technological University, 2015.
[16] PAN H Y, YANG Y, ZHENG J D,et al. A noise reduction method of symplectic singular mode decomposition based on Lagrange multiplier [J]. Mechanical Systems and Signal Processing,2019,133: 106283.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}