静磁力作用轴向运动铁磁薄板非线性固有振动

穆媛1,2,胡宇达1,2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 207-214.

PDF(2962 KB)
PDF(2962 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 207-214.
论文

静磁力作用轴向运动铁磁薄板非线性固有振动

  • 穆媛1,2,胡宇达1,2
作者信息 +

Nonlinear natural vibration of axially moving ferromagnetic thin plate under static magnetic force

  • MU Yuan1,2, HU Yuda1,2
Author information +
文章历史 +

摘要

针对面内轴向运动铁磁矩形薄板,研究静磁力作用且具有不同边界约束非线性系统的固有振动问题。根据电磁理论给出铁磁矩形板在外加磁场环境下所受的磁化力;基于动能和应变能的表达形式,应用哈密顿变分原理,推得轴向运动铁磁薄板的磁弹性非线性振动方程。考虑四边简支、对边简支对边自由、对边简支对边夹支的三种不同边界约束类型,通过伽辽金法进行离散,得到横向常磁场作用下薄板的非线性常微分振动方程,确定静磁力作用下板的静挠度。应用KBM法求解,得出非线性自由振动系统的位移解析解和固有频率表达式。应用Matlab软件进行数值计算,绘制了固有振动随轴向速度、磁场强度、初值等的变化规律,并进行了对比分析。结果表明:固有振动频率随轴向速度和磁场强度的增加而减小;振动频率与初值有关且随初值的增加而增大,非线性特征明显;不同材料和不同边界条件直接影响着板所受的静磁力和静挠度。

Abstract

The natural vibration of a nonlinear system with different boundary constraints under the action of static magnetic force is studied for a ferromagnetic rectangular plate moving axially in plane. The magnetization force of ferromagnetic rectangular plate under external magnetic field is given according to electromagnetic theory.  Based on the expressions of kinetic energy and strain energy, the nonlinear magneto-elastic vibration equation of axially moving ferromagnetic thin plate is deduced by using Hamiltonian variational principle. Considering three different boundary constraint types of simply supported by four sides, simply supported by opposite sides and free by opposite sides, and simply supported by opposite sides and clipped by side, the nonlinear ordinary differential vibration equation of thin plate under transverse constant magnetic field was obtained by Galerkin method, and the static deflection of thin plate under static magnetic force was determined. Using KBM method, the displacement analytical solution and natural frequency expression of nonlinear free vibration system are obtained. Matlab software was used for numerical calculation, and the variation of natural vibration with axial velocity, magnetic field intensity, initial value and so on was drawn, and the comparative analysis was carried out. The results show that the natural vibration frequency decreases with the increase of axial velocity and magnetic field intensity. The vibration frequency is related to the initial value and increases with the increase of the initial value. Different materials and boundary conditions directly affect the static magnetic force and deflection of the plate.

关键词

铁磁薄板 / 非线性固有振动 / 轴向运动 / 静磁力 / KBM法

Key words

Ferromagnetic thin plate / Nonlinear natural vibration / Axial motion / Static magnetic force / KBM method

引用本文

导出引用
穆媛1,2,胡宇达1,2. 静磁力作用轴向运动铁磁薄板非线性固有振动[J]. 振动与冲击, 2023, 42(11): 207-214
MU Yuan1,2, HU Yuda1,2. Nonlinear natural vibration of axially moving ferromagnetic thin plate under static magnetic force[J]. Journal of Vibration and Shock, 2023, 42(11): 207-214

参考文献

[1] Moon F C, Pao Y H. Magnetoelastic buckling of a thin plate. Journal of Applied Mechanics, 1968, 35(1): 53-58.
[2] Yang W T, Pan H, Zheng D L, et al. Vibration and dynamic instability of ferromagnetic thin plates in magnetic fields[J]. Mechanics Research Communications, 1999, 26(2): 239-244.
[3] Hasanyan D, Librescu L, Qin Z, et al. Nonlinear vibration of finitely-electroconductive plate strips in an axial magnetic field[J]. Computers&Structures, 2005, 83(15-16): 1205-1216.
[4] Hu Y D, Ma B B. Magnetoelastic combined resonance and stability analysis of a ferromagnetic circular plate in alternating magnetic field[J]. Applied Mathematics and Mechanics-English Edition, 2019, 40(7): 925-942.
[5] Hu Y D, Wang J. Principal-internal resonance of an axially moving current-carrying beam in magnetic filed[J]. Nonlinear Dynamics, 2017, 90(1): 683-695.
[6] Hu Y D, Li J. The magneto-elastic subharmonic  resonance of current-conducting thin plate in magnetic filed[J]. Journal of Sound and Vibration, 2009, 319(3-5): 1107-1120.
[7] Golubeva T N, Korobkov Y S, Khromatov V E. Influence of a longitudinal magnetic field on the vibration frequencies of ferromagnetic plates[J]. Russian Electrical Engineering, 2013, 84(3): 155-159.
[8] Liang W, Soh A, Hu R. Vibration analysis of a ferromagnetic plate subjected to an inclined magnetic field[J]. International Journal of Mechanical Sciences, 2007, 49(10): 440-446.
[9] Gao Y W. Study on magneto-elastic-plastic deformation characteristics of ferromagnetic rectangular plate with simple supports[J]. Acta Mechanica Sinica, 2009, 25(1):139-147.
[10] Xue C X, Zhang S Y, Shu X F. Nonlinear principal resonance of a soft ferromagnetic rectangularplate under a transverse magnetic field[J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(3,4): 1359-1364.
[11] Zhou Y H, Miya K. A Theoretical prediction of in-crease of natural frequency to ferromagnetic plates under in-plane magnetic fields[J]. Journal of Sound and Vibration, 1999, 222(1): 49-64.
[12] Wang X Z. Dynamic analysis of magnetoelasticity for ferromagnetic plates with nonlinear magnetization in magnetic fields[J]. Jounal of Engineering Mechanics-ASCE, 2013, 139(5): 559-567.
[13] Tahmasebi E, Khorasani N A, Imam A. Nonlinear vibration behavior of a carry current ferromagnetic beam plate under magnetic fields and thermal loads[J]. Joural of Vibration and Control, 2020, 26(15-16): 1276-1285.
[14] Ghayesh M H, Khadem S E. Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity[J]. International Journal of Mechanical Sciences, 2008, 50(3): 389-404.
[15] Armand R, Mouafo T, Adali S, et al. Effects of the thickness on the stability of axially moving viscoelastic rectangular plates[J]. Applied Acoustics, 2018, 140(1): 315-326.
[16] 张宇飞, 刘金堂, 闻邦椿. 浸液轴向变速运动黏弹性板的组合参数共振[J]. 振动与冲击, 2019, 38(8): 69-74.
ZHANG Yu-fei, LIU Jin-tang, Wen Bang-chun. Combined parameter resonance of viscoelastic plate in axial variable speed motion[J]. Journal of Vibration and Shock. 2019, 38(8): 69-74.
[17] 田耀宗, 蹇开林. 轴向运动梁的横向振动分析[J]. 应用数学和力学, 2019, 40(10): 1081-1088.
TIAN Yao-zong, JIAN Kai-lin. Analysis of transverse vibration of axially moving beam [J]. Journal of Applied Mathematics and Mechanics, 2019, 40(10): 1081-1088.
[18] Zhang M, Dong J X. Transverse vibration analysis of axially moving trapezoidal plates[J]. Journal of Nanoelectctronics and Optoelectronics, 2021, 16(6): 978- 986.
[19] Banichunk N, Jeronen J, Neittanmäki P, et al. On the instability of an axially moving elastic plate[J]. International Journal of Solids and Stuuctures, 2010, 47(1): 91-99.
[20] Lin C C. Stability and vibration characteristics of axisally moving plates[J]. International Journal of Solids and Structures, 1997, 34(24): 79-3190.
[21] 赵小颖, 李彪, 丁虎, 等. 中间约束轴向运动梁横向非线性振动[J]. 振动与冲击, 2019, 38(5): 142-145.
ZHAO Xiao-ying, LI Biao, DING Hu, et al. Nonlinear transverse vibration of an axially moving beam with an intermediate spring constraint[J]. Journal of Vibration and Shock, 2019, 38(5): 142-145.
[22] 林鹏程, 滕兆春. 热冲击下轴向运动FGM梁的自由振动分析[J]. 振动与冲击, 2020, 39(12): 249-256.
LIN Peng-cheng, TENG Zhao-chun. Free vibration analysis of axially moving FGM beam under thermal shock[J]. Journal of Vibration and Shock, 2020, 39(12): 249-256.
[23] 胡宇达. 轴向运动导电薄板磁弹性耦合动力学理论模型 [J]. 固体力学学报, 2013, 34(4): 417-425.
HU Yu-da. Theoretical model of magneto-elastic coupling dynamics of an axially moving conducting thin plate[J]. Journal of Solid Mechanics, 2013, 34(4): 417-425.
[24] Zhou Y H, Zheng X J. A theoretical model of magnetoelastic bucking for soft ferromagnetic thin plates[J]. Acta Mechanica Sinica, 1996, 12(3): 213-224.
[25] 刘延柱, 陈立群. 非线性振动[M]. 北京: 高等教育出版社, 2001, 95-98.
LIU Yan-zhu, CHEN Li-qun. Nonlinear Vibrations[M]. Beijing: Higher Education Press, 2001, 95-98.

PDF(2962 KB)

Accesses

Citation

Detail

段落导航
相关文章

/