深海采矿水力提升管多场多尺度耦合非线性振动特性

王普柽1,2,郭晓强1,柳军3,罗杰3,曾林林3,何玉发4

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 240-251.

PDF(6566 KB)
PDF(6566 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 240-251.
论文

深海采矿水力提升管多场多尺度耦合非线性振动特性

  • 王普柽1,2,郭晓强1,柳军3,罗杰3,曾林林3,何玉发4
作者信息 +

Multi-field and multi-scale coupling nonlinear vibration characteristics of hydraulic riser in deep sea mining

  • WANG Pucheng1, 2, GUO Xiaoqiang1, LIU Jun3, LUO Jie3, ZENG Linlin3, HE Yufa4
Author information +
文章历史 +

摘要

针对深海水力采矿提升硬管流致振动失效问题,采用有限元法、Hamilton变分和虚功原理,建立了多场多尺度耦合作用下深海水力采矿提升硬管非线性振动模型,采用尾流振子模型模拟外部流体对大长径比提升硬管的非线性流体力,考虑了自身纵-横向耦合效应、外部海洋涡激效应以及内流流致振动效应。通过理论计算结果与模拟实验测量数据对比,验证了模型的有效性。研究表明,提升硬管在考虑纵横向耦合、涡激振动和大变形等非线性因素下,提升硬管的振动具有高度非线性特征。随着中间仓质量的增加,提升硬管的顺流向偏移量和均方根应力减小,横流向振动频带分布更广,其顶端受到的轴力更大。小周期、大幅值的波浪对提升硬管的振动、应力和顶端轴力影响颇为明显。

Abstract

Aiming at the problem of flow induced vibration failure of deep-sea hydraulic mining riser, a nonlinear vibration model of deep-sea mining riser under multi field and multi-scale coupling action is established by using finite element method, Hamiltonian variation and virtual work principle. Wake oscillator model is used to simulate the nonlinear fluid force of external flow of deep-sea mining riser with large length diameter ratio. The longitudinal-transverse coupling effect, external ocean vortex induced effect and internal flow-induced vibration effect are considered. The validity of the model is verified by comparing the theoretical calculation results with the measured data of the simulation experiment. The research shows that, considering the nonlinear factors such as longitudinal-transverse coupling, vortex induced vibration and large deformation, the cross flow (CF), in-line (IL) and longitudinal direction vibration of the mining riser have highly nonlinear characteristics. With the increase of the quality of the intermediate silo, the downstream offset and root-mean-square (RMS) stress of the mining riser decrease, and the axial force on the top of the mining riser increase. Small-period and large-value w0aves have obvious effects on the vibration, stress and axial force at the top of the mining riser.

关键词

深海采矿 / 纵横向耦合 / 涡激振动 / 大变形 / 管柱力学

Key words

Deep-sea mining / longitudinal–transverse coupling / vortex-induced vibration / large deformation / String mechanics

引用本文

导出引用
王普柽1,2,郭晓强1,柳军3,罗杰3,曾林林3,何玉发4. 深海采矿水力提升管多场多尺度耦合非线性振动特性[J]. 振动与冲击, 2023, 42(11): 240-251
WANG Pucheng1, 2, GUO Xiaoqiang1, LIU Jun3, LUO Jie3, ZENG Linlin3, HE Yufa4. Multi-field and multi-scale coupling nonlinear vibration characteristics of hydraulic riser in deep sea mining[J]. Journal of Vibration and Shock, 2023, 42(11): 240-251

参考文献

[1] 辛仁臣, 刘豪. 海洋资源[M]. 北京:中国石化出版社, 2008:81-82.
XIN Ren-chen, LIU Hao. Marine resources [M]. Beijing: China Petrochemical Press, 2008:81-82.
[2] 杨建民, 刘磊, 吕海宁, 等. 我国深海矿产资源开发装备研发现状与展望[J]. 中国工程科学, 2020, 22(6): 1-9.
YANG Jianmin, LIU Lei, LV Haining, et al. Deep-sea mining equipment in China: Current status and prospect[J]. Strategic Study of CAE, 2020, 22(6):1-9
[3] VERICHEV S, METRIKINE A, PLAT R, HENDRIKSE H. Dynamics of the vertical hydraulic transport system for deep sea mining[C]. Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, Netherlands. June 2011, 4: 461-468.
[4] 唐达生, 李钟, 周知进, 等. 锰结核泵工作对扬矿管道振动影响的研究[J]. 振动与冲击, 2015, 34(23):149-152+160.
TANG Dasheng, LI Zhong, ZHOU Zhijin, et al. Effects of manganese nodules pump operation on lifting pipe vibration[J]. Journal of Vibration and Shock, 2015, 34(23):149-152+160.
[5] 肖林京, 左帅, 于志豪. 深海采矿扬矿管的纵向振动分析[J]. 科学技术与工程, 2020, 20(18):7213-7219.
XIAO Linjing, ZUO Shuai, YU Zhihao. Longitudinal vibrations analysis of lifting pipe in deep-sea mining [J]. Science Technology and Engineering, 2020, 20(18):7213-7219.
[6] 肖林京, 张文明, 方湄. 深海采矿扬矿管非线性动态特性研究[J]. 煤炭学报, 2002(04):417-421.
XIAO Linjing, ZHANG Wenming, FANG Mei. Study of nonlinear dynamic characteristics on deep ocean lifting pipe [J]. Journal of China Coal Society, 2002(04):417-421.
[7] 肖林京, 曾庆良, 张文明. 深海采矿扬矿管非线性偏移特性研究[J]. 机械工程学报, 2002(08):94-99.
XIAO Linjing, ZENG Qingliang, ZHANG Wenming. Study on nonlinear migration characteristics of lifting pipe in deep sea mining [J]. Journal of Mechanical Engineering, 2002(08):94-99.
[8] LI Yan, LIU Shaojun, LI Li. Dynamic analysis of deep-ocean mining pipe system by discrete element method [J]. China Ocean Engineering, 2007, 21(1): 175-185.
[9] 周知进, 阳宁, 王钊, 等. 外部流体作用下管道输送流固耦合效应偏移分析[J]. 振动与冲击, 2013, 32(13):142-146.
ZHOU Zhijin, YANG Ning, WANG Zhao. Pipe's offset analysis for a pipeline transporting under action of external fluid considering fluid-solid coupled effects[J]. Journal of Vibration and Shock, 2013, 32(13):142-146.
[10] 王志. 深海采矿扬矿管道工作特性的流固耦合分析与综合评价研究[D]. 长沙:中南大学,2010.
WANG Zhi. Fluid-solid coupling analysis and comprehensive evaluation of working characteristics of pipelines in deep-ocean mining system [D]. Changsha: Central South University, 2010.
[11] 胡琼. 深海采矿扬矿管道系统力学行为模拟试验系统研究[D]. 长沙:中南大学,2011.
HU Qiong. The simulation test research on mechanical behavior of the lifting pipe system of deep-ocean mining [D]. Changsha: Central South University, 2011.
[12] 王水田.卡门漩涡引起的海洋建筑物的振动及其防止(上)[J].水道港口, 1983(04):48-54+47.
WANG Shuitian. Vibration of marine structures induced by Karman vortex and its prevention (Part 1) [J]. Journal of Waterway and Harbor, 1983 (04): 48-54 + 47.
[13] 田晓洁, 谢大帅, 刘贵杰, 等. 基于ANSYS的气液两相流海洋立管流固耦合特性分析[J]. 振动与冲击, 2021, 40(07):260-267.
TIAN Xiaojie, XIE Dashuai, LIU Guijie, et al. Analysis of fluid-structure interaction characteristics of gas-liquid two-phase flow marine riser based on ANSYS[J]. Journal of Vibration and Shock, 2021, 40(07):260-267.
[14] LIU Jun, ZHAO Hong Liang, YANG S X, et al.  Nonlinear dynamic characteristic analysis of a landing string in deepwater riserless drilling [J]. Shock and Vibration, 2018, 2018: 8191526.
[15] 邢誉峰,梁昆.梁纵向与横向耦合非线性振动分析[J].北京航空航天大学学报, 2015(08): 1359- 1366.
XING Yufeng, LIANG Kun. Nonlinear vibration analysis of longitudinal-transverse coupled beam [J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, (8):1359-1366.
[16] 吴学敏, 黄维平. 考虑大变形的大柔性立管涡激振动模型[J]. 振动与冲击, 2013, 32(18):21-25+30.
WU Xuemin, HUANG Weiping. A new model for predicting vortex-induced vibration of a long flexible riser with large deformation[J]. Journal of Vibration and Shock, 2013, 32(18):21-25+30.
[17] 袁昱超, 薛鸿祥, 唐文勇. 振荡流下柔性立管涡激振动时域响应研究[J]. 振动与冲击, 2018, 37(13):56-64+91.
YUAN Yuchao, XUE Hongxiang, TANG Wenyong. Vortex-induced vibration time domain responses of flexible risers under oscillatory flows[J]. Journal of Vibration and Shock, 2018, 37(13):56-64+91.
[18] 何玉发, 郭晓强, 刘清友, 等. 深水隔水管-测试管系统非线性动力学模型研究[J]. 振动与冲击, 2022, 41(11):104-113.
HE Yufa, GUO Xiaoqiang, LIU Qingyou, et al. Nonlinear dynamic model of deep-water RTS[J]. Journal of Vibration and Shock, 2022, 41(11):104-113.
[19] 马刚, 孙丽萍. 基于总体坐标法的大变形锚泊线的静力分析 [J]. 哈尔滨工程大学学报, 2014, 35(6), 674-678.
MA Gang, SUN Liping. Static analysis of the mooring line under large deformation by utilizing the global coordinate method[J]. Journal of Harbin Engineering University, 2014, 35(6), 674-678.
[20] DO K D, LUCEY A D. Boundary stabilization of extensible and unshearable marine risers with large in-plane deflection [J]. Automatica, 2017, 77: 279-292.
[21] 尉志源, 仲伟东, 张橙,等. 海洋工程大变形柔性结构非线性力学分析模型[J]. 哈尔滨工程大学学报, 2019, 40(10): 1667-1674.
WEI Zhiyuan, ZHONG Weidong, ZHANG Cheng, et al. Nonlinear analysis model for the flexible structures with large deformation in ocean engineering[J]. Journal of Harbin Engineering University, 2019, 40(10): 1667-1674.
[22] FACCHINETTI M L, LANGRE E D, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations [J]. Journal of Fluids and Structures, 2004, 19(2): 123 - 140. 
[23] VIOLETTE R, LANGRE-E D E, SZYDLOWSKI J. Computation of vortex-induced vibrations of long structures using a wake oscillator model: Comparison with DNS and experiments [J]. Computers and Structures, 2007, 85(41944): 1134-1141.
[24] KJELDBY T K, NYDAL O J. A Lagrangian three-phase slug tracking framework[J]. International Journal of Multiphase Flow, 2013,56: 184-194.
[25] MAO L J, ZENG S, LIU Q Y. Experimental investigation on vortex-induced vibrations of a hang-off evacuated drilling riser[J]. Nonlinear Dynamics, 2020, 102(3): 1499-1516.

PDF(6566 KB)

Accesses

Citation

Detail

段落导航
相关文章

/