摘要
针对基于传统盲源分离算法的结构模态参数识别需要满足传感器数目不少于源信号数目的问题,提出一种基于单通道盲源分离的结构模态参数识别方法,该方法利用单个通道信号即可完成结构模态参数识别。首先,利用同步提取变换(Synchro Extracting Transform,SET)对单通道观测信号进行时频分析以确定变分模态分解(Variational Mode Decomposition,VMD)参数 的取值;其次,将观测信号利用VMD分解形成 个本征模态函数(Intrinsic Mode Function,IMF);再次,将 个IMF进行线性混合形成2维观测信号并与原单通道观测信号重构形成3维观测信号,利用基于信号稀疏性的源信号分离算法分离得到各单模态信号;最后,利用单模态识别技术识别结构模态参数。仿真和实测信号数据表明所提方法的有效性。
Abstract
Aiming at the problem that the number of sensors was not less than the number of source signals in structural modal parameter identification based on traditional blind source separation algorithm,a structural modal parameter identification method based on single channel blind source separation was proposed,which could complete the structural modal parameter identification by using a single channel signal.Firstly,the synchronous extracting transform (SET) was used to analyze the time-frequency of the single channel observation signal to determine the value of the variable mode decomposition (VMD) parameters;Secondly,the observed signal was decomposed by VMD to form an intrinsic mode function (IMF);Thirdly,the two IMF were linearly mixed to form a two-dimensional observation signal,and reconstructed with the original single-channel observation signal to form a three-dimensional observation signal. Each single-mode signal was separated by the source signal separation algorithm based on signal sparsity;Finally,the structural modal parameters were identified by single modal identification technology. Simulation and measured signal data show the effectiveness of the proposed method.
关键词
单通道盲源分离 /
同步提取变换(SET) /
变分模态分解(VMD) /
信号稀疏性 /
模态参数识别
{{custom_keyword}} /
Key words
single channel blind source separation /
synchronous extraction transformation (SET) /
variational modal decomposition (VMD) /
signal sparsity /
modal parameter identification
{{custom_keyword}} /
甄龙信,任良,董前程.
基于单通道盲源分离的结构模态参数识别[J]. 振动与冲击, 2023, 42(11): 252-261
ZHEN Longxin, REN Liang, DONG Qiancheng.
Structural modal parameter identification based on single channel blind source separation[J]. Journal of Vibration and Shock, 2023, 42(11): 252-261
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Lu Z R,Lin G,Wang L. Output-only modal parameter identification of structures by vision modal analysis[J]. Journal of Sound and Vibration,2021:115949.
[2] 陈永高,钟振宇,何杰. 基于改进确定-随机子空间算法的桥梁结构模态参数识别[J].振动与冲击,2021,40(02):220-227.
Chen Yonggao,Zhong Zhenyu,he Jie. Modal parameter identification of bridge structure based on improved deterministic stochastic subspace algorithm [J] Journal of Vibration and Shock, 2021,40 (02):220-227.
[3] Li C,Cao Y . Modal Parameter Identification Based on an Enhanced Hilbert Vibration Decomposition[J]. Iranian Journal of Science and Technology - Transactions of Civil Engineering,2021:1-12.
[4] 康杰. 基于压缩感知的结构振动模态参数识别方法研究[D].哈尔滨工业大学,2019.
Kang Jie. Research on structural vibration modal parameter identification method based on Compressive Sensing[D] Harbin Institute of Technology,2019.
[5] 姚小俊. 基于欠定盲源分离理论的结构运营模态辨识方法研究[D].大连理工大学,2018.
Yao Xiaojun Research on structural operationmode identification method based onunderdetermined blind source separation theory[D] Dalian University of Technology,2018.
[6] 张景泉. 基于盲源分离和贝叶斯方法的模态自动分析研究[D].浙江大学,2021.
Zhang Jingquan. Research on automatic modal analysis based on blind source separation and Bayesian method[D] Zhejiang University,2021.
[7] 梅铁民. 盲源分离理论与算法[M]. 西安电子科技大学出版社,2013.
Mei Tiemin. Blind source separation theory and algorithm[M] Xi'an University of ElectronicScience and Technology Press,2013.
[8] 静行,袁海庆,赵毅.基于独立分量分析的结构模态参数识别[J].振动与冲击,2010,29(03):137-141+210.
Jing Xing,Yuan Haiqing,Zhao Yi. Structural modal parameter identification based on independent component analysis[J] Journal of Vibration and Shock,2010,29 (03):137-141+210.
[9] 程琳,杨杰,郑东健,等. 基于Hankel矩阵联合近似对角化的结构模态识别[J].振动.测试与诊断,2016,36(06):1147-1152+1239.
Cheng Lin,Yang Jie,Zheng Dongjian,et al. Structural modal identification based on joint approximate diagonalization of Hankel matrix[J] Journal of Vibration. Measurement & Diaggnosis and diagnosis,2016,36 (06):1147-1152+1239.
[10] 张晓丹,姚谦峰.基于盲源分离的结构模态参数识别[J].振动与冲击,2010,29(03):150-153+211.
Zhang Xiaodan,Yao Qianfeng Structural modal parameter identification based on blind source separation [J] Journal of Vibration and Shock,2010,29(03):150-153+211.
[11] 王鑫,王成,李海波,等.基于稀疏成分分析的欠定工作模态参数识别[J].计算机集成制造系统,2021,27(08):2405-2415.
Wang Xin,Wang Cheng,Li Haibo,et al. Modal parameter identification of underdetermined operation based on sparse component analysis [J] Computer Integrated Manufacturing System,2021,27(08):2405-2415.
[12] Ma B,Zhang T. Underdetermined Blind Source Separation Based on Source Number Estimation and Improved Sparse Component Analysis[J]. Circuits Systems and Signal Processing,2021,40(5):1-20.
[13] 于刚,周以齐,刘磊,等. 基于欠定盲源分离的结构模态参数识别[J].振动.测试与诊断,2016,36(04):722-728+811-812.
Yu Gang,Zhou Yiqi,Liu Lei,et al. Structural modal parameter identification based on underdetermined blind source separation [J] Journal of Vibration. Measurement & Diaggnosis and diagnosis,2016,36(04):722-728+811-812.
[14] Huang N E,Shen Z,Long S R,et al. The empiricalmode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences,1998,454(1971):903-995.
[15] Dragomiretskiy K,Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544.
[16] 靳行. 内燃机车振动噪声源辨识研究[D].西南交通大学,2019.
Jin Xing Research on vibration and noise source identification of diesel locomotive [D] Southwest Jiaotong University,2019.
[17] 殷红,董康立,彭珍瑞. 基于VMD-SSI的结构模态参数识别[J]. 振动与冲击,2020,39(10):81-91.
Yin Hong,Dong Kangli,Peng zhenrui. Structural modal parameter identification based on vmd-ssi[J] Journal of Vibration and Shock,2020,39 (10):81-91.
[18] Gang Y,Yu M,Xu C. Synchroextracting Transform[J]. IEEE Transactions on Industrial Electronics,2017,64(10):8042-8054.
[19] Daubechies I,Lu J,Wu H T . Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis,2011,30(2):243-261.
[20] Yu G. An Underdetermined Blind Source Separation Method with Application to Modal Identification[J]. Shock and Vibration,2019,2019(7):1-15.
[21] Yu K,Kai Y,Bai Y. Estimation of modal parameters using the sparse component analysis based underdetermined blind source separation[J]. Mechanical Systems & Signal Processing,2014,45(2):302-316.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}