针对两层三跨地铁地下车站结构的地震破坏特征,本文采用水泥橡胶砂混合土作为地铁地下车站结构周围回填地基隔震层,建立三种不同地基隔震体系的土-隔震层-地下结构静、动力耦合非线性动力相互作用的二维有限元计算模型,分析了不同地基隔震层设置方案对地铁地下车站结构的相对层间位移角、加速度反应、震后残余变形和混凝土地震损伤破坏等地震反应的影响规律。结果表明:在地下车站结构周围地基设置水泥橡胶砂隔震层可以有效地减轻地下车站结构的地震侧向变形,尤其是在四周都采用隔震材料回填时效果最好;总体来看,在车站结构周围采用不同地基隔震的方法均可以有效地减轻地下车站结构的惯性力和混凝土地震损伤程度,提高了结构的整体抗震性能,从经济角度和施工方便出发,建议优先选用在地下车站结构两侧设置地基隔震层。
Abstract
To the earthquake damage characteristics of two-story and three-span underground subway station structure, this paper adopts cement-rubber-sand mixtures as the backfill seismic isolation layer around the underground subway station, and establishes two-dimensional finite element models of soil-isolation layer-underground structure static & dynamic coupling nonlinear dynamic interaction, and analyzes the influence of different foundation isolation cases on the relative inter-story displacement, acceleration response, post-earthquake residual deformation and earthquake damage of the underground subway station structure. The results show that the setting of cement-rubber-sand seismic isolation layer around the underground station structure can effectively reduce the lateral seismic deformation of the underground station structure, especially when the seismic isolation material is used to backfill all around the underground structure. From the economic point of view and the convenience of construction, it is recommended that the foundation isolation layer should be infilled only on both sides of the underground subway station structure.
关键词
地铁地下结构 /
水泥橡胶砂 /
地基隔震层 /
抗震性能
{{custom_keyword}} /
Key words
Underground subway station /
cement-rubber-sand mixture /
foundation isolation layer /
seismic performance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. Lu D C, Wu C, Ma C, et al. A novel segmental cored column for upgrading the seismic performance of underground frame structures[J]. Soil Dynamics and Earthquake Engineering. 2020, 131: 106011.
[2]. Ma C, Lu D C, Du X L. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology. 2018, 74: 1-9.
[3]. 庄海洋,付继赛,朱明轩,等. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析[J]. 隧道与地下工程灾害防治. 2019, 1(03): 57-67.
ZHUANG Haiyang, FU Jisai, ZHU Mingxuan, et al. Seismic performance of underground subway station with elastic slipping bearing fixed on the top of columns [J]. Hazard Control in Tunnelling and Underground Engineering. 2019, 1(03): 57-67.
[4]. Zornberg J G, Cabral A R, Viratjandr C. Behaviour of tire shred sand mixtures[J]. Canadian Geotechnical Journal. 2004, 41(2): 227-241.
[5]. Aydilek A H, Madden E T, Demirkan M M. Field Evaluation of a Leachate Collection System Constructed with Scrap Tires[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2006, 132(8): 990-1000.
[6]. Pincus H J, Edil T B, Bosscher P J. Engineering Properties of Tire Chips and Soil Mixtures[J]. Geotechnical Testing Journal. 1994, 17(4): 453.
[7]. 刘方成,吴孟桃,景立平. 加筋橡胶砂复合垫层隔震性能试验研究[J]. 振动与冲击. 2019, 38(22): 184-189.
Liu Fangcheng, Wu Mengtao, Jing Liping Experimental study on seismic isolation performance of reinforced rubber sand composite cushion [J] Vibration and shock 2019, 38(22): 184-189.
[8]. Mehrjardi G T, Tafreshi S N M, Dawson A R. Numerical analysis on Buried pipes protected by combination of geocell reinforcement and rubber-soil mixture[J]. 2015, 13(2).
[9]. 周恩全,宗之鑫,王琼,等. 橡胶-粉土轻质混合土中管道动力响应特性[J]. 岩土力学. 2020, 41(04): 1388-1395.
ZHOU Enquan, ZONG Zhixin, WANG Qiong, et al. Dynamic characteristics of pipe buried in rubber-silt lightweight mixtures [J]. Rock and Soil Mechanics. 2020, 41(04): 1388-1395.
[10]. 倪茜,卫林斌. 减震层作用下地铁车站结构的三维减震分析[J]. 西安科技大学学报. 2018, 38(03): 459-465.
NI Qian, WEI Lin-Bin. Three-dimensional shock absorption analysis of metro station structure based on seismic layer [J]. Journal of Xi’an University of Science and Technology. 2018, 38(03): 459-465.
[11]. 朱雪立,王伟,庄海洋. 基于侧向地基回填隔震层的两层三跨地铁地下车站结构抗震性能分析[J]. 地震工程与工程振动. 2021, 41(03): 165-175.
ZHU Xueli, WANG Wei, ZHUANG Haiyang. Seismic performance of the two-layer three-span subway underground station structure with lateral foundation backfill isolation layer [J]. Earthquake Engineering and Engineering Dynamics. 2021, 41(03): 165-175.
[12]. 朱雪立. 基于水泥橡胶砂隔震层的地下车站结构抗震性能研究[D]. 南京:南京工业大学,2021.
ZHU Xueli. Study on seismic performance of underground station structure based on cement rubber sand isolation layer [D]. Nanjing: Nanjing Tech University, 2021.
[13]. 庄海洋,陈国兴. 对土体动力黏塑性记忆型嵌套面模型的改进[J]. 岩土力学. 2009, 30(01): 118-122.
ZHUANG Haiyang, CHEN Guoxing. Improvement of dynamic viscoplastic memorial nested yield surface model of soil [J]. Rock and Soil Mechanics. 2009, 30(01): 118-122.
[14]. Lee J, Fenves G L. Plastic-Damage Model for Cyclic Loading of Concrete Structures[J]. Journal of Engineering Mechanics. 1998, 124(8): 892-900.
[15]. Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures. 1989, 25(3): 299-326.
[16]. Zhuang H Y, Hu Z H, Chen G X. Numerical modeling on the seismic responses of a large underground structure in soft ground[J]. Journal of Vibroengineering. 2015, 17(2): 802-815.
[17]. Zhuang H Y, Wang R, Shi P X, et al. Seismic response and damage analysis of underground structures considering the effect of concrete diaphragm wall[J]. Soil Dynamics and Earthquake Engineering. 2019, 116: 278-288.
[18]. 庄海洋,吴祥祖,陈国兴. 考虑初始静应力状态的土-地下结构非线性静、动力耦合作用研究[J]. 岩石力学与工程学报. 2011, 30(S1): 3112-3119.
ZHUANG Haiyang, WU Xiangzu, CHEN Guoxing. Study of nonlinear static and dynamic coupling interaction of soil-underground structure considering initial static stress[J]. Chinese Journal of Rock Mechanics and Engineering. 2011, 30(S1): 3112-3119.
[19]. 楼梦麟,王文剑,朱彤,等. 土-结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动. 2000(04): 30-36.
LOU Menglin, WANG Wenjian, ZHU Tong, et al. Soil lateral boundary effect in shaking fable model test of soil-structure system [J]. Earthquake Engineering and Engineering Vibration. 2000(04): 30-36.
[20]. [20] Chen S, Tang B Z, Zhuang H Y, et al. Experimental investigation of the seismic response of shallow-buried subway station in liquefied soil[J]. Soil Dynamics and Earthquake Engineering. 2020, 136: 106153.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}