一种用于主动悬架LQG控制器设计权重优化的改进遗传算法

段源博,李靖玮,罗建南

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 278-283.

PDF(1777 KB)
PDF(1777 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 278-283.
论文

一种用于主动悬架LQG控制器设计权重优化的改进遗传算法

  • 段源博,李靖玮,罗建南
作者信息 +

A modified genetic algorithm of weighting optimization in LQG controller design for active suspensions

  • DUAN Yuanbo, LI Jingwei, LUO Jiannan
Author information +
文章历史 +

摘要

如何实现在不同行驶条件下汽车两大性能的最佳协调(即乘坐舒适性和操作稳定性)是主动悬架设计的关键。在LQG控制器设计中,性能指标的加权系数决定了汽车在当前条件下的各性能间的最佳平衡。而实际中需要考虑的因素来自多个方面,如不同路面的不平度、车辆行驶速度、车载质量、甚至还可能包括不同驾驶员偏好等,因而使得控制器设计中对权重系数的选取较难处理。针对这一难题,提出了一种改进的遗传算法优化方案。根据驾驶人(或乘员)对不同方面的性能需求,建立包含不同权值系数的适应度函数,针对适应度函数设计了典型的优化模式,并通过对惩罚函数值的适当选取来实现对性能指标加权系数的优化。通过不同工况及要求下的仿真,分析了该算法的可行性和有效性。研究结果表明,所提出的权值适应度函数优化方法简单、可行、有效。所设计的改进遗传算法能够高效地优化性能指标的加权系数以实现汽车在当前条件下的不同性能的最佳平衡,从而为主动悬架LQG控制器的设计提供一个有效的方法。

Abstract

It is a key task to obtain a best compromise for two important performances of automobile (i.e., ride comfort and handling stability) in different operation conditions for designing active suspensions. In LQG controller design, they are the weighting parameter values for performance indexes which determine this issue. In practice, many influence factors have to be considered, including road roughness, vehicle speed, loading condition, and even driver preference, etc. Hence, it is crucially important to properly select weighting values in LQG controller design. Aiming at the difficulty in determining the weighting parameters, a modified genetic-algorithm optimization method was proposed based on different performance requirements. The fitness function including different weighting values was built and a few of typical optimization schemes of fitness function were designed accordingly. By modifying penalty function, efficient weighting optimization is realized. Based on the established vehicle suspension model along with properly designed LQG controller, simulations are carried out for examining the feasibility and effectiveness of the algorithm. The study results show that the optimization algorithm is feasible to obtain the best compromise between different performance requirements. The proposed method of weighted fitness function is simple and effective. It can provide an efficient way to properly select targeted weightings for LQG controller design.

关键词

主动悬架 / LQG控制器设计 / 加权系数优化 / 改进遗传算法

Key words

active suspension / LQG controller design / weighting parameter optimization / modified genetic algorithm

引用本文

导出引用
段源博,李靖玮,罗建南. 一种用于主动悬架LQG控制器设计权重优化的改进遗传算法[J]. 振动与冲击, 2023, 42(11): 278-283
DUAN Yuanbo, LI Jingwei, LUO Jiannan. A modified genetic algorithm of weighting optimization in LQG controller design for active suspensions[J]. Journal of Vibration and Shock, 2023, 42(11): 278-283

参考文献

[1] SUN W C, ZHAO Y, LI J F, et al. Active suspension control with frequency band constraints and actuator input delay[J]. IEEE Transactions on Industrial Electronics, 2012, 59(1): 530-537.
[2] CHEN C C, CHEN Y T. Global optimization control for nonlinear full-car active suspension system with multiper-formances[J]. IET Control Theory and Applications, 2021, 15(14): 1882-1905.
[3] THOMPSON A G. An active suspension with optimal linear state feedback[J]. Vehicle System Dynamics, 1976, 5(4): 187-203.
[4] YU F, CROLLA D. An optimal self-tuning controller for an active suspension[J]. Vehicle System Dynamics, 1998, 29(1): 51-65.
[5] 喻凡, 林逸. 汽车系统动力学(第2版)[M]. 北京: 机械工业出版社, 2016.
[6] 喻凡, 郭孔辉. 车辆悬架的最优自适应与自校正控制[J]. 汽车工程, 1998(04): 193-200+205.
YU Fan, GUO Konghui. Adaptive and self-tuning control of vehicle suspension[J]. Automotive Engineering, 1998(04): 193-200+205.
[7] 张进秋, 彭虎, 张建, 等. 车辆悬挂LQR主动控制权矩阵权重参数优化[J]. 振动与冲击, 2018, 37(22): 214-219.
ZHANG Jinqiu, PENG Hu, ZHAGN Jian. Weight parameters optimization for the weight matrices in a vehicle suspension LQR active control[J]. Journal of Vibration and Shock, 2018, 37(22): 214-219.
[8] 桑楠, 白玉, 李玉芳. 基于遗传算法的汽车主动悬架控制器优化设计[J]. 机械科学与技术, 2013, 32(09): 1400-1404.
SANG Nan, BAI Yu, LI Yufang. Optimal design of active suspension controller based on genetic algorithm[J]. Mechanical Science and Technology, 2013, 32(09): 1400-1404.
[9] NAGARKAR M, BHALERAO Y, PATIL G V, et al. Multi-objective optimization of nonlinear quarter car suspension system–PID and LQR control[J]. Procedia Manufacturing, 2018, 20: 420-427.
[10] 陈士安, 邱峰, 何仁, 等. 一种确定车辆悬架LQG控制加权系数的方法[J]. 振动与冲击, 2008(02): 65-68+176.
CHEN Shian, QIU Feng, HE Ren, et al. A method for determining the weight coefficient of vehicle suspension LQG control[J]. Journal of Vibration and Shock, 2008(02): 65-68+176.
[11] 陈双, 宗长富. 车辆主动悬架的遗传粒子群LQG控制方法[J]. 汽车工程, 2015, 37(02): 189-193.
CHEN Shuang, ZONG Changfu. Genetic particle swarm LQG control of vehicle active suspension[J]. Automotive Engineering, 2015, 37(02): 189-193.
[12] 王雅璇, 罗建南, 罗小桃, 等. 基于改进人工蜂群算法的主动悬架LQR控制器设计[J]. 噪声与振动控制, 2021, 41(03): 61-66.
WANG Yaxuan, LUO Jiannan, LUO Xiaotao, et al. Design of LQR controllers of active suspensions based on improved artificial bee colony algorithm[J]. Noise and Vibration Control, 2021, 41(03): 61-66.
[13] YU W, LI J, YUAN J, et al. LQR controller design of active suspension based on genetic algorithm[C]// 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2021: 1056-1060.
[14] WHITLEY D. A genetic algorithm tutorial[J]. Statistics and Computing, 1994, 4(2): 65-85.
[15] 雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2014.

PDF(1777 KB)

Accesses

Citation

Detail

段落导航
相关文章

/