薄壁方管轴向压溃的相似性研究

常新哲1,徐绯1,杨磊峰1,王帅1,2,李肖成3,惠旭龙3,王计真3,4

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 284-294.

PDF(2691 KB)
PDF(2691 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 284-294.
论文

薄壁方管轴向压溃的相似性研究

  • 常新哲1,徐绯1,杨磊峰1,王帅1,2,李肖成3,惠旭龙3,王计真3,4
作者信息 +

Study on the similarity of axial crushing of thin-walled square tubes

  • CHANG Xinzhe1, XU Fei1, YANG Leifeng1, WANG Shuai1,2, LI Xiaocheng3 XI Xulong3, WANG Jizhen3,4
Author information +
文章历史 +

摘要

薄壁方管由于其几何特性导致相似性研究中,厚度无法与长度、宽度按照同一比例进行结构缩放,从而产生几何畸变,造成传统的相似律失效。为了解决这一问题,首先基于轴压冲击问题的响应方程、能量守恒方程,采用方程分析和量纲分析,推导了受轴压冲击作用下理想弹塑性薄壁方管几何畸变时动态响应的相似律。然后,讨论了缩比模型与原型选取同种和不同种材料时的速度比例因子,并在理想弹塑性材料的基础上进一步修正了考虑应变率、应变硬化效应时的速度比例因子。最后,建立有限元模型验证了畸变模型相似律的有效性。结果表明:缩比模型在采用提出的受轴压冲击薄壁方管的相似律进行缩放后,能够准确预测原型的载荷、能量等动态响应,相似性较好。

Abstract

In the similarity study of thin-walled square tubes due to their geometric characteristics, the thickness cannot be scaled in the same scaling factor as the length and width, resulting in geometric distortion and failure of the traditional similarity law. In order to solve this problem, based on the response equation and energy conservation equation of the axial pressure impact problem, the similarity law of dynamic response of ideal elastic-plastic thin-walled square tubes with geometric distortion under axial compression impact load is derived using equation analysis and dimensional analysis. Then, velocity scaling factors are discussed when the scaled model and the prototype select the same and different materials, and velocity scale factors when considering strain rate and strain hardening effect are further modified on the basis of the ideal elastoplastic material. Finally, finite element models are established to verify the validity of the similarity law of the distortion model. The results show that scaled models can accurately predict the dynamic response of the prototype, such as load and energy, after scaling with the proposed similarity law of thin-walled square tubes impacted by axial compression, and the similarity is good.

关键词

薄壁方管;相似律;几何畸变;几何&mdash / 不同材料耦合畸变;

Key words

Thin-walled square tube / Similarity law / Geometric distortion / Geometry-different material coupling distortion;

引用本文

导出引用
常新哲1,徐绯1,杨磊峰1,王帅1,2,李肖成3,惠旭龙3,王计真3,4. 薄壁方管轴向压溃的相似性研究[J]. 振动与冲击, 2023, 42(11): 284-294
CHANG Xinzhe1, XU Fei1, YANG Leifeng1, WANG Shuai1,2, LI Xiaocheng3 XI Xulong3, WANG Jizhen3,4. Study on the similarity of axial crushing of thin-walled square tubes[J]. Journal of Vibration and Shock, 2023, 42(11): 284-294

参考文献

[1] 张秧聪, 许平, 彭勇, 等. 高速列车前端多胞吸能结构的耐撞性优化[J]. 振动与冲击, 2017, 36(12): 31-36.
ZHANG Yangcong, XU Ping, PENG Yong, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures[J]. Journal of Vibration and Shock, 2017, 36(12): 31-36.
[2] Wang S, Peng Y, Wang T, et al. Collision performance and multi-objective robust optimization of a combined multi-cell thin-walled structure for high speed train[J]. Thin-Walled Structures, 2019,135:341-355.
[3] 马聪承, 兰凤崇, 陈吉清. 泡沫铝复合结构改善汽车侧撞安全的仿真研究[J]. 汽车工程, 2017, 39(4): 432-439.
Ma Congcheng, Lan Fengchong, Chen Jiqing. Simulation Study on the Improvement of Vehicle Side Impact Safety by Aluminum Foam Composite Structure[J]. Automotive Engineering, 2017, 39(4): 432-439.
[4] Baroutaji A, Sajjia M, Olabi A G. On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments[J]. Thin-Walled Structures, 2017, 118: 137-1633.
[5] 伊召锋,于尧,高广军,等.轴向冲击下薄壁方管屈曲模式及初始峰值力控制研究[J].铁道科学与工程学报,2020,17(07):1841-1848.
YI Zhaofeng, YU Yao, GAO Guangjun, et al. On buckling mode and initial peak force control of thin-walled square tube under axial impact[J]. Journal of Railway Science and Engineering,2020,17(07):1841-1848.
[6] 冯晓琳,杨旭东,安涛.泡沫铝原位填充薄壁管的力学及吸能性能[J/OL].热加工工艺,2022(16):49-53[2022-04-09].DOI:10.14158/j.cnki.1001-3814.20212012.
FENG Xiaolin, YANG Xudong, AN Tao. Mechanics and Energy Absorption Properties of In-situ Aluminum Foam-filled Thin-walled Tubes[J/OL]. Hot Working Technology,2022(16):49-53[2022-04-09].DOI:10.14158/j.cnki.1001-3814.20212012.
[7] 姚如洋, 赵振宇, 尹冠生, 等. 薄壁开孔圆管在轴向荷载作用下的理论研究[J].振动与冲击,2020,39(02):141-147.
YAO Ruyang, ZHAO Zhenyu, YIN Guansheng, et al. Theoretical analysis on thin-walled holed circular tubes under axial loading[J]. Journal of Vibration and Shock, 2020,39(02):141-147.
[8] Wierzbicki T, Abramowicz W. On the crushing mechanics of thin-walled structures[J]. Journal of Applied mechanics, 1983, 50(4): 727-734.
[9] Abramowicz W, Jones N. Dynamic progressive buckling of circular and square tubes[J]. International Journal of Impact Engineering, 1986, 4(4): 243-270.
[10] Abramowiez W, Wiezrbicki T. Axial crushing of multiconrer sheet metal columns[J]. Journal of Applied mechanics, 1989; 56(1): 113–120.
[11] Sun G Y, Xu F X, Li G Y, et al. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness [J]. International Journal of Impact Engineering, 2014, 64 (64) :62-74.
[12] 郑玉卿, 朱西产. 棱边强化薄壁方管轴向压溃吸能特性[J]. 汽车工程, 2017, 39(11):1252-1260.
Zheng Yuqing, Zhu Xichan. Energy Absorption Characteristics of Ridgeline Strengthened Thin-walled Square Tube in Axial Crushing[J]. Automotive Engineering, 2017, 39(11):1252-1260.
[13] 郑玉卿, 朱西产, 马志雄. 棱边强化薄壁方管静动态轴压理论和仿真研究[J]. 汽车工程, 2019, 41(04):468-474.
Zheng Yuqing, Zhu Xichan, Ma Zhixiong. Theoretical and Simulation Study on the Static and Dynamic Axial Crushing of Ridgeline Strengthened Thin-walled Square Tubes[J]. Automotive Engineering, 2019, 41(04):468-474.
[14] Oshiro R E , Alves M . Scaling impacted structures[J]. Archive of Applied Mechanics, 2004, 74(1-2):130-145.
[15] Trimino L F, Cronin D S. Non-direct similitude technique applied to the dynamic axial impact of bonded crush tubes[J]. International Journal of Impact Engineering, 2014, 64:39-52.
[16] Mazzariol L M, Oshiro R E, Alves M. A method to represent impacted structures using scaled models made of different materials[J]. International Journal of Impact Engineering, 2016,90:81-94.
[17] Wang, S., Xu, F., Zhang, X., et al. [J]. International Journal of Impact Engineering, 2021, 156:103951.
[18] Oshiro R E, Alves M. Predicting the behaviour of structures under impact loads using geometrically distorted scaled models[J]. Journal of the Mechanics & Physics of Solids, 2012, 60(7):1330-1349.
[19] Wang S, Xu F, Zhang X Y, et al. A directional framework of similarity laws for geometrically distorted structures subjected to impact loads[J]. International Journal of Impact Engineering, 2022, 161: 104092.
[20] Wang S, Xu F, Dai Z. Suggestion of the DLV dimensionless numbersystem to represent the scaled behavior of structures under impact loads[J]. Archive of Applied Mechanics, 2019, 90(4): 701-719.
[21] Jones N. Structural impact [M]. Cambridge: Cambridge university press, 2011.
[22] Reid S R, Reddy T Y, Gray M D. Static and dynamic axial crashing of foam-filled sheet metal tubes[J]. Int J Mech Sci, 1986,28(5):295-322.
[23] 余同希, 卢国兴, 张雄. 能量吸收:结构与材料的力学行为和塑性分析[M]. 北京: 科学出版社, 2019.
[24] Zhao, Y P. Similarity consideration of structural bifurcation buckling.[J]. Forschung im Ingenieurwesen, 1999, 65: 107-112.
[25] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541-548.
[26] 王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究[J]. 力学学报, 2020,052(003):774-786.
Wang Shuai, Xu Fei, Dai Zhen, et al. A direct scaling method for the distortion problems of structural impact[J].Chinese Journal of Theoretical and Applied Mechanics, 2020, 052(003):774-786.
[27] Hamed Sadeghi, Keith Davey, Rooholamin Darvizeh, Abolfazl Darvizeh. Scaled models for failure under impact loading[J]. International Journal of Impact Engineering, 2019, 129: 36-56.

PDF(2691 KB)

303

Accesses

0

Citation

Detail

段落导航
相关文章

/