本文对Bernoulli-Euler梁受轴向载荷时的横向振动特性进行分析。首先获得满足受轴向载荷梁自由振动微分方程的挠度函数的解析表达式,并给出两端为任意弹性约束梁固有频率方程的解析形式,从而可求解出各阶频率和对应的各阶模态。其次,得到5种经典边界条件下受轴向力梁频率方程的简洁形式,选取其中4种边界条件梁进行数值计算。所得结果与利用动刚度法与Wittrick-Williams算法的结果一致。然后,对于5种含有弹性约束边界且受轴向载荷梁,给出其固有频率方程的解析形式及特定轴向力下频率的数值解。所得解析频率方程是精确的,可校核其他数值方法的精度,且在振动优化和模态分析上具有较好的参考价值。结果表明:在轴拉作用下梁的无量纲频率明显比在轴压作用下梁的无量纲频率大;且轴拉时梁无量纲频率随着轴向拉力的变大而逐渐变大;轴压时梁的无量纲频率随轴压力的变大而变小,其中轴压力的值应不超过欧拉临界力。本文还给出若干种边界条件时轴力对梁基频影响系数的实用公式,误差不超过1%。
Abstract
The transverse vibration characteristics of Bernoulli-Euler beam subjected to axial loads is given. Firstly, the analytical expression of deflection is obtained to satisfy the differential equation for free vibration of beam subjected to axial force, and the natural frequency equations of beam’s transverse vibration under general elastic boundary conditions are presented. The natural frequencies can be solved and the corresponding mode for each order can be obtained. Secondly, The brief forms of the frequency equation for beams subjected to axial forces under five kinds of classical boundary conditions are obtained, and the numerical computation is carried out for four kinds of boundary conditions. The obtained results are found to be coincided with those by using the dynamic stiffness method and Wittrick-Williams algorithm. Then for five kinds of boundary conditions including elastic constraint at the beam end, the analytical frequency equation are obtained and some numerical results of natural frequency for beams under axial force are presented. The analytical form of the frequency equation is accurate in theory, which can be used to check the accuracy of other numerical methods, and has good reference in vibration optimization and modal analysis. The influence of axial forces on structural vibration response is analyzed, and the results show that the dimensionless frequency of beams under axial tension is obviously larger than that under axial compression. The dimensionless frequency of beams under axial tension increases with the increase of axial tension. The beam’s dimensionless frequency decreases with the increase of axial compression, in which the value of the axial compression should be less than the critical Euler force. For beams subjected to axial force with several kinds of boundary conditions, practical approximate equations is proposed with the errors less than 1%.
关键词
Bernoulli-Euler梁 /
轴向载荷 /
自由振动 /
固有频率
{{custom_keyword}} /
Key words
Bernoulli-Euler beam /
axial load /
free vibration /
natural frequency
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Timoshenko S P, Gere J M. Theory of elastic stability [M]. New York: McGraw-Hill, 1961.
[2] 滕兆春, 李世荣. 轴向力作用下非对称支承Euler-Bernoulli梁在过屈曲前后的横向自由振动[J]. 振动与冲击, 2004(23):88-91.
Teng Zhaochun,Li Shirong. Pre-buckling and post_buckling transverse free vibration of an asymmetrically supported Euler_Bernoulli beam subjected to axial force[J]. Journal of Vibration and Shock,2004(23):88-91(in Chinese).
[3] 陈小超,毛崎波,薛晓理.轴向力作用不连续梁自由振动的广义函数解[J].固体力学学报,2014(35):319-324.
Chen Xiaochao, Mao Qibo, Xue Xiaoli. Free vibration analysis of axial-loaded beams with different discontinuities using generalized functions[J]. Chinese Journal of Solid Mechanics,2014(35):319-324(in Chinese).
[4] 王乐,余慕春.轴力对自由边界Timoshenko梁横向动特性影响研究[J].兵器装备工程学报, 2018(39):36-39.
Wang Le,Yu Muchun. Effects of axial force on the lateral vibration characteristics of Timoshenko beam under free boundary condition[J]. Journal of Ordnance Equipment Engineering, 2018(39):36-39(in Chinese).
[5] Zui H, Shinke T, Namita Y. Practical formulas for estimation of cable tension by vibration method[J]. Journal of Structural Engineering, 1996,122(6): 651-665.
[6] 李平杰,王荣辉,马牛静. 带中间弹性支承拉索的横向振动频率解析算法[J].华南理工大学学报(自然科学版),2012,40(02):7-12, 18.
Li Pingjie, Wang Ronghui, Ma Niujing.Analytical Alogrithm of transverse vibration frequency of cables with Intermediate flexible supports[J]. Journal of South China University of Technology(Natural Science Edition),2012,40(02):7-12, 18(in Chinese).
[7] Hashemi M S, Richard M J. Free vibration analysis of axially loaded bending-torsion coupled beams: A dynamic finite element [J]. Computers and Structures, 2000, 77(6): 711-724.
[8] Williams F W, Yuan S, Ye K. Towards deep and simple understanding of the transcendental eigenvalue problem of structural vibrations [J]. Journal of Sound and Vibration, 2002, 256(4): 681-693.
[9] Banerjee J R. Dynamic stiffness formulation for structural elements: A general approach [J]. Computers and Structures, 1997, 63(1): 101-103.
[10] Williams F W, Wittrick W H. An automatic computational procedure for calculating natural frequencies of skeletal structures [J]. International Journal of Mechanical Sciences, 1970, 12(9): 781-791.
[11] 张广芸,张宏生,陆念力. Bernoulli-Euler梁横向振动固有频率的轴力影响系数[J].工程力学,2011(28):65-71.
Zhang Guangyun, Zhang Hongsheng, LU Nianli. The axial load influence coefficient of natural frequencies for lateral vibration of a Bernoulli-Euler beam[J]. Engineering Mechanics, 2011(28):65-71(in Chinese).
[12] S. Naguleswaran. Transverse vibration of an uniform Euler-Bernoulli beam under linearly varying axial force[J]. Journal of Sound and Vibration,2004(275): 47-57.
[13] 郭兰满, 黄迪山, 朱晓锦. 传递矩阵法分析轴向受力智能梁的振动和稳定性[J]. 振动、测试与诊断, 2011,31(01):78-84.
Guo Lanman, Huang Dishan, Zhu Xiaojin.The vibration and stability of an axially stressed intelligent beam are analyzed by transfer matrix method[J].Journal of Vibration,Measurement&Diagnosis, 2011,31(01): 78-84(in Chinese).
[14] 陈红永, 陈海波, 张培强. 轴向受压运动梁横向振动特性的数值分析[J].振动与冲击,2014,33(24):101-105.
Chen Hongyong,Chen Haibo, Zhang Peiqiang. Numerical Analysis of free vibration of an axially moving beam under compressive load. Journal of vibration and shock,2014,33(24):101-105.(in Chinese).
[15] 翟学勇,苗媛媛,王秀雅,等. 轴向压缩载荷下的音板木材振动和声学响应特性研究[J].振动与冲击,2021,40(23):187-193.
Zhai Xueyong, Miao Yuanyuan,Wang Xiuya,, etc.Vibration and acoustic response characteristics of soundboard wood under axial compressive load[J]. Journal of vibration and shock,2021,40(23):187-193(in Chinese).
[16] 赵雨皓,杜敬涛,许得水.轴向载荷条件下弹性边界约束梁结构振动特性分析[J].振动与冲击, 2020, 39 (15): 109-117.
Zhao Yuhao,Du Jingtao,Xu deshui.Vibration characteristics analysis for an axially loaded beam with elastic boundary restraints[J]. Journal of vibration and shock,2020, 39(15): 109-117(in Chinese).
[17] 刘善亮, 金基铎, 张艳雷. 轴向力作用两端支承梁的固有特性和稳定性分析[J].沈阳航空工业学报, 2009 (26):26-30.
Liu Shanjin,Jin Jiduo, Zhao Yanlei. Characteristic and stability of supported beam under axial force[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2009(26): 26-30(in Chinese).
[18] 项贻强, 高超奇, 杨云深. 两端任意约束的弹性支撑梁在移动荷载下的动力响应[J].哈尔滨工业大学学报, 2022,54(03): 12-19.
Xiang Yiqiang, Gao Chaoqi, Yang Yunshen. Dynamic response of elastic supported beams with arbitrary constrainst at both ends under moving loads[J]. Journal of Harbin Institute of Technology, 2022,54(03): 12-19(in Chinese).
[19] 彭如海,刘杰,彭劼. 刚架模态分析的弹性支承梁法[J].河海大学学报(自然科学版), 2002(02):9-13.
Peng Ruhai, Liu Jie, Peng Jie.Elastic Bearing Beam Method for Mode Analysis of Rigid Frame[J]. Journal of HOHAI University (Natural Science Edition), 2002 (02): 9-13(in Chinese).
[20] 胡海岩. 振动力学:研究性教程[M]. 北京:科学出版社,2020.
Hu Haiyan. Mechanics of vibration: an investigative course[M]. BeiJing: Science Press, 2020(in Chinese).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}