多稳态匹配随机共振在机械早期故障特征提取中的应用

谯自健1,2,3,4,陈帅1,马莉5,赖志慧6,刘健7,许学方8,梅一丹9

振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 87-95.

PDF(2779 KB)
PDF(2779 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (11) : 87-95.
论文

多稳态匹配随机共振在机械早期故障特征提取中的应用

  • 谯自健1,2,3,4,陈帅1,马莉5,赖志慧6,刘健7,许学方8,梅一丹9
作者信息 +

Multistable matching stochastic resonance with its application to mechanical incipient fault characteristic extraction

  • QIAO Zijian1,2,3,4, CHEN Shuai1, MA Li5, LAI Zhihui6, LIU Jian7,XU Xuefang8, MEI Yidan9
Author information +
文章历史 +

摘要

传统单稳态或双稳态随机共振方法的势函数稳态结构单一,难以匹配复杂多变的输入信号;固定尺度因子忽略了与势结构、输入信号之间的协同增强作用;且一阶系统易遭受低频噪声干扰,依赖高通滤波器辅助。因此,提出自适应二阶多稳态匹配随机共振方法,并应用于机械早期故障的微弱特征提取。该方法的优势在于:(1)多稳态势结构的多样性可与不同的输入信号实现有效匹配;(2)能实现输入信号、势结构、尺度因子三者之间的协同作用;(3)二阶多稳态随机共振能够抑制低频噪声干扰。仿真分析和机车轴承故障诊断案例表明:提出的方法相比单稳态和双稳态随机共振方法具有更强的微弱特征增强与提取能力。

Abstract

It is difficult for traditional monostable and bistable stochastic resonance (SR) methods to match with complicated and variable input signals due to the single stable structure of the potential function. Moreover, the scaling factor is generally fixed as a constant, thereby neglecting the synergistic effect among the potential structure, input signal and scaling factor. In addition, since traditional SR methods are based on first-order model, they easily suffer from the noise interference in the low frequency, thereby strongly depending on the help of highpass filter. Therefore, an adaptive second-order multistable matching SR method is proposed to extract weak characteristics in mechanical incipient faults. The method has three advantages: (1) the diversity of multistable potential structure is able to achieve the adaptive matching with different input signals, (2) the optimal synergistic effect among input signal, potential structure and scaling factor is obtained and (3) second-order multistable SR is able to suppress the noise interference in the low frequency. Finally, the proposed method is validated using simulated and experimental data. The results show that the proposed method is able to not only extract weak characteristics from the original vibration signals, but also possess stronger enhancment performance than the traditional methods.

关键词

多稳态随机共振 / 微弱特征提取 / 机械早期故障诊断

Key words

multistable stochastic resonance / weak characteristic extraction / mechanical incipient fault diagnosis

引用本文

导出引用
谯自健1,2,3,4,陈帅1,马莉5,赖志慧6,刘健7,许学方8,梅一丹9. 多稳态匹配随机共振在机械早期故障特征提取中的应用[J]. 振动与冲击, 2023, 42(11): 87-95
QIAO Zijian1,2,3,4, CHEN Shuai1, MA Li5, LAI Zhihui6, LIU Jian7,XU Xuefang8, MEI Yidan9. Multistable matching stochastic resonance with its application to mechanical incipient fault characteristic extraction[J]. Journal of Vibration and Shock, 2023, 42(11): 87-95

参考文献

[1] R. L. Badzey, P. Mohanty. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance[J]. Nature, 2005, 437(7061): 995-998.
[2] J. J. Collins, C. C. Chow, T. T. Imhoff. Stochastic resonance without tuning[J]. Nature, 1995, 376(6537): 236-238.
[3] R. Almog, S. Zaitsev, O. Shtempluck, et al. Signal amplification in a nanomechanical Duffing resonator via stochastic resonance[J]. Applied Physics Letters, 2007, 90(1): 013508.
[4] R. R. Borges, F. S. Borges, E. L. Lameu, et al. Effects of the spike timing-dependent plasticity on the synchronisation in a random Hodgkin–Huxley neuronal network[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 34: 12-22.
[5] D. L. Miranda, W. H. Hsu, D. C. Gravelle, et al. Sensory enhancing insoles improve athletic performance during a hexagonal agility task[J]. Journal of Biomechanics, 2016, 49(7): 1058-1063.
[6] W. Zhao, R. Zheng, X. Yin, et al. An electromagnetic energy harvester of large-scale bistable motion by application of stochastic resonance[J]. Journal of Vibration and Acoustics, 2022, 144(1): 011007.
[7] K. J. H. Peters, Z. Geng, K. Malmir, et al. Extremely broadband stochastic resonance of light and enhanced energy harvesting enabled by memory effects in the nonlinear response[J]. Physical Review Letters, 2021, 126(21): 213901.
[8] Z. Qiao, Y. Lei, N. Li. Applications of stochastic resonance to machinery fault detection: A review and tutorial[J]. Mechanical Systems and Signal Processing, 2019, 122: 502-536.
[9] S. Lu, Q. He, J. Wang. A review of stochastic resonance in rotating machine fault detection[J]. Mechanical Systems and Signal Processing, 2019, 116: 230-260.
[10] S. Liu, Y. Sun, Y. Kang. A novel e-exponential stochastic resonance model and weak signal detection method for steel wire rope[J]. IEEE Transactions on Industrial Electronics, 2021, DOI: 10.1109/TIE.2021.3095802.
[11] J. Li, X. Wang, Z. Li, et al. Stochastic resonance in cascaded monostable systems with double feedback and its application in rolling bearing fault feature extraction[J]. Nonlinear Dynamics, 2021, 104(2): 971-988.
[12] M. Yao, W. Xu, L. Ning. Stochasti resonance in a bias monostable system driven by a periodic rectangular signal and uncorrelated noises[J]. Nonlinear Dynamics, 2012, 67(1): 329-333.
[13] 李继猛, 陈雪峰, 何正嘉. 采用粒子群算法的冲击信号自适应单稳态随机共振检测方法[J]. 机械工程学报, 2011, 47(21): 58-63.
LI Jimeng, CHEN Xuefeng, HE Zhengjia. Adaptive monostable stochastic resonance based on PSO with application in impact signal detection[J]. Journal of Mechanical Engineering, 2011, 47(21): 58-63.
[14] S. Paul, G. Kotagiri, R. Ganguly, et al. Stochastic resonance in thermally bistable Josephson weak links and micro-SQUIDs[J]. Physical Review Applied, 2021, 15(2): 024009.
[15] 谯自健, 束学道. 非对称势诱导随机共振增强机械重复瞬态提取[J]. 机械工程学报, 2021, 57(23): 160-168.
QIAO Zijian, SHU Xuedao. Stochastic resonance induced by asymmetric potentials enhanced mechanical repetitive transient extraction[J]. Journal of Mechanical Engineering, 2021, 57(23): 160-168.
[16] 杨建华, 韩帅, 张帅, 等. 强噪声背景下滚动轴承微弱故障特征信号的经验模态分解[J]. 振动工程学报, 2020, 33(03): 582-589.
YANG Jianhua, HAN Shuai, ZHANG Shuai, et al. Empirical mode decomposition of weak fault characteristic signal of rolling bearing under strong noise background[J]. Journal of Vibration Engineering, 2020, 33(3): 582-589.
[17] J. Y. Tan, X. F. Chen, J. Y. Wang, et al. Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009, 23: 811-822.
[18] 李宏坤, 张晓雯, 贺长波, 等. 利用随机共振的叶片裂纹微弱信息增强方法[J]. 机械工程学报, 2016, 52(1): 94-101.
LI Hongkun, ZHANG Xiaowen, HE Changbo, et al. Weak fault enhancement method for blade crack by using stochastic resonance[J]. Journal of Mechanical Engineering, 2016, 52(1): 94-101.
[19] 张刚, 谭春林, 贺利芳. 二维非对称双稳随机共振系统及其在故障诊断中的应用[J]. 仪器仪表学报, 2021, 42(1): 228-236.
ZHANG Gang, TAN Chunlin, HE Lifang. Two-dimensional asymmetric bi-stable stochastic resonance system and its application in fault diagnosis[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 228-236.
[20] Y. Lei, Z. Qiao, X. Xu, et al. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 94: 148-164.
[21] 尹进田,唐杰,刘丽,等. 参数同步优化随机共振在牵引传动系统早期微弱故障诊断中的应用[J]. 振动与冲击, 2021, 40(17): 234-240.
YIN Jintian, TANG Jie, LIU Li, et al. Application of parameter synchronous optimization stochastic resonance in early weak fault diagnosis of traction drive system[J]. Journal of Vibration and Shock, 2021, 40(17): 234-240.
[22] 李国英, 王诗彬, 杨志勃, 等. 自适应多尺度噪声调节二阶随机共振增强方法[J].振动与冲击, 2022, 41(12): 8-15.
LI Guoying, Wang Shibin, YANG Zhibo, et al. An adaptive multiscale noise tuning second order stochastic resonance enhanced method[J]. Journal of Vibration and Shock, 2022, 41(12): 8-15.
[23] 刘健, 胡冰, 丁晓剑, 等. 色关联噪声激励可控双稳态势模型的非线性共振研究[J]. 振动与冲击, 2022, 41(10): 72-80.
LIU Jian, HU Bing, DING Xiaojian, et al. Nonlinear resonance of a controllable bistable state potential model induced by correlated color noises[J]. Journal of Vibration and Shock, 2022, 41(10): 72-80.

PDF(2779 KB)

Accesses

Citation

Detail

段落导航
相关文章

/