非均匀噪声下基于稀疏重构的声矢量传感器阵列方位估计方法

王伟东1,李向水1,李辉1,史文涛2

振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 127-136.

PDF(2099 KB)
PDF(2099 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 127-136.
论文

非均匀噪声下基于稀疏重构的声矢量传感器阵列方位估计方法

  • 王伟东1,李向水1,李辉1,史文涛2
作者信息 +

A method of DOA estimation of acoustic vector sensor array based on sparse reconstruction under non-uniform noise

  • WANG Weidong1, LI Xiangshui1, LI Hui1, SHI Wentao2
Author information +
文章历史 +

摘要

为了解决非均匀噪声情况下声矢量传感器阵列方位估计性能恶化的问题,提出了基于加权最小二乘(Weighted Least Squares, WLS)的稀疏信号重构方法和基于加权协方差矩阵拟合(Weighted Covariance Matrix Fitting, WCMF)的稀疏信号重构方法。首先,定义了一个虚拟的声矢量传感器阵列流形矩阵,并重构包含稀疏信号功率和噪声功率的协方差矩阵。然后,为了估计稀疏信号功率和每个通道输出的噪声功率,基于WLS方法和稀疏信号加权最小化方法,构造了关于稀疏信号功率和噪声功率的代价函数。在此基础上,为了进一步提高稀疏信号功率和噪声功率的估计精度,基于WCMF准则对构造的代价函数进行改进。最后,应用泰勒级数展开式将关于稀疏信号功率和噪声功率的非线性代价函数转化为线性函数,并采用循环迭代算法估计稀疏信号功率和噪声功率。待迭代终止时,对稀疏信号功率谱峰搜索,即可实现对目标的方位估计。仿真结果表明,与现有非均匀噪声下的估计方法相比,所提方法提高了非均匀噪声情况下声矢量传感器阵列的方位估计精度。

Abstract

To improve the direction of arrival (DOA) estimation performance of the acoustic vector sensor array in the presence of non-uniform noise, the sparse signal reconstruction methods based on weighted least squares (WLS) and weighted covariance matrix fitting (WCMF) are proposed in this paper. Firstly, a virtual manifold matrix of acoustic vector sensor array is defined, and the covariance matrix containing the sparse signal power and the noise power is reconstructed. To estimate the sparse signal power and the output noise power of each channel for the acoustic vector sensor array, a cost function via the sparse signal power and the noise power is then formulated based on the WLS method and the sparse signal weighted minimization method. On this basis, to further improve the estimation accuracy of sparse signal power and noise power, the formulated cost function is improved based on the WCMF criterion. Finally, the nonlinear cost function is transformed into a linear function by using the Taylor series expansion, then the sparse signal power and the noise power are estimated by loop iterative algorithm. Furthermore, the spectral peak search is performed on the sparse signal power to achieve the DOA estimation of sources when the iteration is terminated. Simulation results show that the proposed methods achieve a more accurate DOA estimation compared to the existing non-uniform noise power estimation methods.

关键词

声矢量传感器阵列 / 非均匀噪声 / 稀疏重构 / 方位估计

Key words

Acoustic vector sensor array / non-uniform noise / sparse reconstruction / direction of arrival estimation

引用本文

导出引用
王伟东1,李向水1,李辉1,史文涛2. 非均匀噪声下基于稀疏重构的声矢量传感器阵列方位估计方法[J]. 振动与冲击, 2023, 42(13): 127-136
WANG Weidong1, LI Xiangshui1, LI Hui1, SHI Wentao2. A method of DOA estimation of acoustic vector sensor array based on sparse reconstruction under non-uniform noise[J]. Journal of Vibration and Shock, 2023, 42(13): 127-136

参考文献

[1] 梁国龙, 庞福滨, 张光普. 弹性球壳声散射对矢量传感器测向精度的影响[J]. 振动与冲击, 2014.33(3): 46-50.
LIANG Guolong, PANG Fubin, ZHANG Guangpu. Influences of sound scattering of an elastic sphericalshell on DOA estimating accuracy of a vector sensor[J]. Journal of Vibration and Shock, 2014.33(3):46-50.
[2] 王伟东, 张群飞, 史文涛, 等. 基于稀疏信号功率迭代补偿的矢量传感器阵列DOA估计[J]. 振动与冲击, 2020, 39(15):48-57.
WANG Weidong, ZHANG Qunfei, SHI Wentao, et al. DOA estimation of vector sensor arrays based on sparse signal power iterative compensation[J]. Journal of Vibration and Shock, 2020,39(15):48-57.
[3] GAO J. LIU J, WANG J. et al. Acoustic vector sensor: reviews and future perspectives[J]. Systems Engineering and Electronics, 2020, 42(1): 76-82.
[4] 梁浩, 崔琛, 余剑, 等. 矢量传感器阵列MIMO雷达高精度二维DOA与极化联合估计[J]. 电子与信息学报, 2016,38(10): 2437-2444.
LIANG Hao, CUI Chen, YU Jian, et al. Joint Estimation of Two-Dimensional DOA with High Accuracy and Polarization for MIMO Radar Using Electromagnetic Vector Sensor Arrays[J]. Journal of Electronics & Information Technology, 2016, 38(10): 2437-2444.
[5] SHARMA U. AGRAWAL M. 2qth-Order cumulants based virtual array of a single acoustic vector sensor [J]. Digital Signal Processing, 2022, 123:103438.
[6] 韦娟, 郑柳青, 郑浩南, 等. 气体泄漏声源的时域压缩波达方向估计研究[J]. 振动与冲击, 2019,38(17):165-171.
WEI Juan, ZHENG Liuqing, ZHENG Haonan, et al. DOA estimation of a gas leakage sound source based on analog signals’ time-domain compression sensing[J]. Journal of Vibration and Shock, 2019,38(17):165-171.
[7] 季浩然, 马晓川, 张舒皓, 等. 功率受限的常规波束形成后处理拟合方法[J]. 声学学报, 2020, 45(01): 1-14.
JI Haoran, MA Xiaochuan, ZHANG Shuhao, et al.  Power constraint  conventional beamforming post-processing fitting method[J]. Acta Acustica, 2020, 45(01): 1-14.
[8] ZHANG X, XU L, XU L, et al. Direction of departure and direction of arrival estimation in MIMO radar with reduced dimension MUSIC[J]. IEEE communications letters, 2010, 14(12): 1161-1163.
[9] WU X. ZHU W. YAN J. et al. Two sparse-based methods for of-grid direction-of-arrival estimation[J]. Signal Processing, 2018, 142: 87-95.
[10] WANG B. CHEN F. GE H. Subspace projection semi-real-valued MVDR algorithm based on vector sensor array processing[J]. Neural Computing and Applications, 2020, 32: 173-181.
[11] 杨丽, 沈统, 秦洁. 基于检测指数判决的子空间方位估计方法 [J]. 振动与冲击, 2021, 40(4):114-119.
YANG Li, SHEN Tong, QIN Jie. A subspace bearing estimation method based on check indices judgment[J]. Journal of Vibration and Shock, 2021, 40(4):114-119.
[12] 郭拓, 王英民, 张立琛. 基于样本协方差矩阵谱分离特性的波达方向估计方法[J]. 振动与冲击, 2018,37(12):23-47.
GUO Tuo, WANG Yingmin, ZHANG Lichen. A direction of arrival estimation method based on spectral separation of the sample covariance matrix[J]. Journal of Vibration and Shock, 2018,37(12):23-47.
[13] WANG Y. WANG L. XIE J. et al. DOA Estimation Under Mutual Coupling of Uniform Linear Arrays Using Sparse Reconstruction[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1004-1007.
[14] MALIOUTOV D. CETIN M. WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.
[15] YARDIBI T, LI J, STOICA P, et al. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 425-443.
[16] WU Y T. C. HOU C H. LIAO G S. et al. Direction-of-arrival estimation in the presence of unknown nonuniform noise fields[J]. IEEE Journal of Oceanic Engineer, 2006, 31(2): 504-510.
[17] LIAO B. LIAO G . WEN J. A method for DOA estimation in the presence of unknown nonuniform noise[J]. Journal of Electromagnetic Waves and Applications, 2008, 22: 2113–2123.
[18] ABEID H. ZHANG Q. LI J. et al. Iterative Methods for Subspace and DOA Estimation in Nonuniform Noise[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3008-3020.
[19] 马立斯, 何培宇, 崔敖, 等. 非均匀噪声环境下基于MISC阵列的自适应波束形成方法[J]. 信号处理. 2022.38(2):268-275.
MA Lisi, HE Peiyu, CUI Ao, et al. Adaptive Beamforming Method Based on MISC Array in Non-uniform Noise[J]. Journal of Signal Processing, 2022.38(2):268-275.
[20] LIU A. YANG D. SHI S. et al. Augmented subspace MUSIC method for DOA estimation using acoustic vector sensor array[J]. IET Radar, Sonar & Navigation. 2019, 13(6): 969-975.
[21] Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted   minimization[J]. Journal of Fourier analysis and applications, 2008, 14(5): 877-905.
[22] CUSTODIO A. ROCHA.H. VICENTE L. Incorporating minimum Frobenius norm models in direct search[J]. Computational Optimization and Applications. 2010.46:265-278.
[23] XU Z, CHANG X, XU F, et al.  regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on neural networks and learning systems, 2012, 23(7): 1013-1027.

PDF(2099 KB)

324

Accesses

0

Citation

Detail

段落导航
相关文章

/