鉴于目前中央分隔带护栏时常发生立柱绊阻现象,设计了一种新型中央分隔带护栏。采用显式非线性有限元模拟对新型中央分隔带护栏的碰撞安全性进行评估,分析了乘员碰撞速度(v),乘员碰撞后加速度(a),驶出角(EA),车辆离去距离(d)以及最大横向位移(MD)等碰撞后动力学响应。综合考虑,选择乘员碰撞y方向加速度(a_y)、车辆离去距离(d)作为目标函数,通过构建RBF代理模型以减少计算成本;最后使用多目标遗传算法进行优化,获得护栏最佳设计参数。在小型客车、中型客车、大型货车碰撞下,新型中央分隔带护栏显示出良好的导向能力。有限元模拟结果表明,该护栏可有效预防立柱绊阻现象,车辆离去距离仅为2.06m,乘员碰撞y方向加速度为118.2 m/s2,满足SB级护栏防护要求。
Abstract
In view of the tire snagging phenomenon of the widely used median guardrail, a new median guardrail is designed. The crash safety of the new median guardrail is evaluated by explicit nonlinear finite element simulation. The dynamic responses of the barrier after collision, such as occupant impact velocity (v), occupant impact velocity (a), exit angle (EA), vehicle departure distance (d) and maximum lateral displacement (MD), are analyzed. Considering comprehensively, the acceleration in y direction of occupant impact (a_y) and vehicle departure distance (d) are selected as the objective functions, and the RBF surrogate model is constructed to reduce the calculation cost. Finally, multi-objective genetic algorithm is used to optimize and obtain the best design parameters of guardrail. Under the impact of small bus, medium bus and large truck, the new median guardrail shows good guidance ability. The finite element simulation results show that the guardrail can effectively prevent the tire snagging phenomenon, the departure distance only 2.06m, and the acceleration in the y direction of occupant collision is 118.2 m/s2, meeting the SB level protection requirements.
关键词
中央分隔带护栏 /
代理模型 /
优化设计 /
绊阻现象 /
多目标遗传算法
{{custom_keyword}} /
Key words
median guardrail /
RBF surrogate model /
optimization design /
tire snagging phenomenon /
multi-objective genetic algorithm
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ren Z , Vesenjak M . Computational and experimental crash analysis of the road safety barrier[J]. Engineering Failure Analysis, 2005, 12(6):963-973.
[2] Davids, WG, Botting, et al. Development and structural testing of a composite-reinforced timber highway guardrail[J]. CONSTR BUILD MATER, 2006, 2006,20(9)(-):733-743.
[3] Faller R K, Sicking D L, Bielenberg R W, et al. Performance of steel-post, W-beam guardrail systems[J]. Transportation research record, 2007, 2025(1): 18-33.
[4] Sicking D L, Reid J D, Rohde J R. Development of the midwest guardrail system[J]. Transportation research record, 2002, 1797(1): 44-52.
[5] 雷正保, 李丽红, 雷沐羲,等. 新型柔性护栏碰撞安全性仿真分析及实车验证[J]. 振动与冲击, 2013, 32(22):4.
LEI Zhengbao, LI Lihong, CHEN Chenchen, te al. Simulation analysis and real car vaildation for crashworthiness of a new flexible safe fence [J]. Journal of vibration and shock, 2013, 32(22): 28-31.
[6] Yin H F, Xiao Y Y, Wen G , et al. Design optimization of a new W-beam guardrail for enhanced highway safety performance[J]. Advances in Engineering Software, 2017:S0965997817302144.
[7] 赵坤民, 崔娜杰, 赵德望,等. 汽车与护栏碰撞立柱绊阻机理及防止措施[J]. 汽车工程, 2021, 43(5):8.
Zhao K M, Cui N J, Zhao D W, et al. Mechanism and Prevention Measures of Post Stumbling Obstruction in Car-Guardrail Collision[J]. Automotive Engineering, 2021, 43(5):8.
[8] Hou S , Wei T , Zheng Y , et al. Optimization design of corrugated beam guardrail based on RBF-MQ surrogate model and collision safety consideration[J]. Advances in Engineering Software, 2014, 78(dec.):28-40.
[9] Yang J , Xu G , Cai C S , et al. Crash Performance Evaluation of a New Movable Median Guardrail on Highways[J]. Engineering Structures, 2019, 182(MAR.1):459-472.
[10] Wang Q , Fang H , Yin H . Reliability analysis of concrete barriers under vehicular crashes using augmented RBFs[J]. Structural and Multidisciplinary Optimization, 2020, 61(10).
[11] Houssein E H , Hosney M E , Oliva D , et al. A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery[J]. Computers & Chemical Engineering, 2020, 133(Feb.2):106656.1-106656.16.
[12] Ozcanan S , Osman A . Minimization of Accident Severity Index in concrete barrier designs using an ensemble of radial basis function metamodel-based optimization[J]. Optimization and Engineering, 2020(6).
[13] 公路护栏安全性能评价标准[M]. 人民交通出版社, 2013.
[14] Lei, Z., Sun, H., Tu, X., Xun, Z., & Zhou, W. (2022). Topology optimization for crashworthiness of cyclic symmetric isosceles under dynamic response constraints. International Journal of Crashworthiness, 27(1), 181-192.
[15] Ozcanan S, Atahan A. Radial basis function surrogate model-based optimization of guardrail post embedment depth in different soil conditions [J]. Proceedings of the Institution of Mechanical Engineers Journal of Automobile Engineering, 2019, 234(2-3):095440701984854.
[16] Neves, R. R. , et al. "Performance of some basic types of road barriers subjected to the collision of a light vehicle." Journal of the Brazilian Society of Mechanical Sciences and Engineering 40.6(2018):274.
[17] 聂昕, 黄鹏冲, 陈涛,等. 基于耐撞性拓扑优化的汽车关键安全件设计[J]. 中国机械工程, 2013, 24(23):6.
NIE Xin, HUANG Pengchong, CHEN Tao. Topology optimization of automotive key safety component design based on crashworthiness [J]. Journal of Chinese Mechanical Engineering, 2013, 24(23):6.
[18] Lee, J. , et al. "Numerical Simulation on Concrete Median Barrier for Reducing Concrete Fragment Under Harsh Impact Loading of a 25-ton Truck." Journal of Engineering Materials & Technology 139.2(2017):021015.
[19] Cao, R. , et al. "Numerical Studies on Concrete Barriers Subject to MASH Truck Impact." Journal of Bridge Engineering 25.7(2020):04020035
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}