氧化石墨烯/陶瓷球增强聚氨酯SPS复合板抗侵彻性能

邹广平1,吴松阳1,杨柳2,唱忠良1,王宣1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 17-24.

PDF(2566 KB)
PDF(2566 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 17-24.
论文

氧化石墨烯/陶瓷球增强聚氨酯SPS复合板抗侵彻性能

  • 邹广平1,吴松阳1,杨柳2,唱忠良1,王宣1
作者信息 +

Anti-penetration performance of graphene oxide/ceramic ball reinforced polyurethane SPS composite plate

  • ZOU Guangping1, WU Songyang1, YANG Liu2, CHANG Zhongliang1, WANG Xuan1
Author information +
文章历史 +

摘要

无机填料的加入,能够较大程度上增强聚氨酯的性能,从而使以聚氨酯为芯层的复合结构性能得到提升。为得到具有更好抗侵彻能力的SPS复合板,利用原位聚合法得到氧化石墨烯增强聚氨酯弹性体并对其进行单轴拉压测试,在此基础上加入陶瓷球作为新的增强相,以Q235钢作为面板制备了芯层为石墨烯增强聚氨酯以及石墨烯/陶瓷球增强聚氨酯的SPS复合结构,通过钢球弹的侵彻实验并运用LS-DYNA数值仿真得到两种复合板的弹道极限速度,分析其吸能特性及损伤机理。结果表明:当石墨烯质量分数为0.4wt%时石墨烯增强聚氨酯的压缩模量较纯聚氨酯提高了32.4%,拉伸强度提高了42.6%。在加入陶瓷球后复合板的弹道极限速度提高了20.8%,陶瓷球的碎裂和偏移中断了径向应力的传播,子弹尺寸以外的陶瓷球较为完整。

Abstract

The addition of inorganic filler can greatly enhance the performance of polyurethane, so that the performance of the composite structure with polyurethane as the core layer can be improved. In order to obtain SPS composite plates with better penetration resistance, graphene oxide reinforced polyurethane elastomers were obtained by in-situ polymerization and tested under uniaxial tension and compression. On this basis, ceramic balls were added as a new reinforcing phase, and SPS composite structures with graphene reinforced polyurethane and graphene / ceramic balls reinforced polyurethane as the core layer were prepared with Q235 steel as the panel, Through the penetration experiment of steel ball projectile and LS-DYNA numerical simulation, the ballistic limit velocities of the two composite plates are obtained, and their energy absorption characteristics and damage mechanism are analyzed. The results show that when the mass fraction of graphene is 0.4wt%, the compressive modulus of graphene reinforced polyurethane is increased by 32.4% and the tensile strength is increased by 42.6% compared with pure polyurethane. After adding ceramic balls, the ballistic limit velocity of the composite plate increased by 20.8%. The fragmentation and offset of ceramic balls interrupted the propagation of radial stress, and the ceramic balls beyond the size of bullets were relatively complete.

关键词

聚氨酯 / 陶瓷球 / SPS复合板 / 动态响应 / 数值仿真

Key words

Polyurethane / Ceramic ball / SPS composite board / Dynamic response / numerical simulation

引用本文

导出引用
邹广平1,吴松阳1,杨柳2,唱忠良1,王宣1. 氧化石墨烯/陶瓷球增强聚氨酯SPS复合板抗侵彻性能[J]. 振动与冲击, 2023, 42(13): 17-24
ZOU Guangping1, WU Songyang1, YANG Liu2, CHANG Zhongliang1, WANG Xuan1. Anti-penetration performance of graphene oxide/ceramic ball reinforced polyurethane SPS composite plate[J]. Journal of Vibration and Shock, 2023, 42(13): 17-24

参考文献

[1] Li P, Liu S, Zheng L. Experimental Study on the Performance of Polyurethane-Steel Sandwich Structure under Debris Flow [J]. Applied Sciences, 2017, 7(10):1018.
[2] 宋彬,黄正祥,翟文,等.聚脲弹性体夹芯防爆罐抗爆性能研究[J].振动与冲击,2016,35( 7) : 138-144.
SONG Bin, HUANG Zhengxiang, ZHAI Wen, et al.Anti-detonation properties of explosion-proof pots made of sandwich structures with polyurea elastomer[J]. Journal of Vibration and Shock, 2016, 35(7):138-144.
[3] 邹广平, 孙杭其, 唱忠良, 等. 聚氨酯/钢夹芯结构爆炸载荷下动力学响应的数值模拟 [J]. 爆炸与冲击, 2015, 164(06):907-912.
ZOU G P, SUN H Q, CHANG Z L, et al. Numerical simulation of dynamic response of polyurethane / steel sandwich structure under explosion load [J]. Explosion andShock Waves, 2015, 164(06):907-912.
[4] Feldmann M, Sedlacek G, GeLer A. A system of steel-elastomer sandwich plates for strengthening orthotropic bridge decks [J]. Mechanics of Composite Materials, 2007, 43(2):183-190.
[5] 沈超明, 叶仁传, 田阿利. 钢/聚氨酯夹层结构动态压缩力学性能与本构模型研究[J]. 振动与冲击, 2016, 35(10):115-119.
SHEN C M, YE R C, TIAN A L. Study on dynamic compressive mechanical properties and constitutive model of steel / polyurethane sandwich structure [J]. Journal of Vibration and Shock, 2016, 35(10):115-119.
[6] Dingxiang Yan, Ling Xu, Chen Chen, et al. Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes[J]. Polymer International, 2012,61(7): 1107-1114.
[7] 刘钧, 鲍铮, 边佳燕. 空心玻璃微珠-氧化石墨烯协同增强聚氨酯泡沫的制备与压缩性能 [J].材料导报, 2018, 32(S2): 419-424.
LIU J, BAO Z, BIAN J Y. Preparation and compressive properties of polyurethane foam reinforced by hollow glass beads and graphene oxide [J]. Materials Reports, 2018,32(S2): 419-424.
[8] S. Sachse, M. Poruri, F. Silva, et al. Effect of nanofillers on low energy impact performance of sandwich structures with nanoreinforced polyurethane foam cores [J]. Journal of Sandwich Structures and Materials, 2014, 16(2), 173–194.
[9] Rasoul N, Reza. S A. Influence of nanoclay reinforced polyurethane foam toward composite sandwich structure behavior under high velocity impact [J]. Journal of Cellular Plastics, 2016.
[10] Woodward Raymond L. A simple one-dimensional approach to modelling ceramic composite armour defeat [J]. International Journal of Impact Engineering, 1990, 9(4): 455-474.
[11] Chang ZL, Zhao WL, Zou GP, et al. Simulation of the lightweight ceramic/aluminum alloy composite armor for optimizing Component Thickness Ratios [J]. Strength of Materials, 2019, 51(1):11-17.
[12] 邹广平, 吴松阳, 徐舒博, 等. 石墨烯/陶瓷颗粒增强聚氨酯基复合材料动态压缩性能 [J]. 兵工学报, Doi: 10.12382/bgxb.2021.0777.
ZOU G P, WU S Y, XU S B, et al. Dynamic Compressive Properties of Graphene/Ceramic Particle Reinforced Polyurethane Matrix Composites[J]. Acta Armamentarii, Doi: 10.12382/bgxb.2021.0777.
[13] 胡勤, 王进华, 吕娟, 等. 6061铝合金约束Al_2O_3陶瓷球复合材料抗弹性能和抗弹机理研究 [J].振动与冲击, 2018, 37(18):165-169+183.
HU Q, WANG J H, LV J, et al. Study on ballistic properties and mechanism of aluminum alloy confined alumina ceramic ball Composites [J]. Journal of Vibration and Shock, 2018, 37(18):165-169+183.
[14] Hu F, Gao J, Zhang B, et al. Effects of Modified Al2O3-Decorated Ionic Liquid on the Mechanical Properties and Impact Resistance of a Polyurethane Elastomer [J]. Materials, 2021, 14(16):4712.
[15] Wang Yingzhu, Luo Weiang, Huang Junwen, et al. Simplification of Hyperelastic Constitutive Model and Finite Element Analysis of Thermoplastic Polyurethane Elastomers [J]. Macromolecular Theory and Simulations, 2020, 29(4):2000009.
[16] Recht RF, Ipson TW. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3):384-390.
[17] Gordon R. Johnson, William H. Cook. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1):31–48.
[18] Wzw A , Zgc A , Ssf B, et al. Experimental study on ceramic balls impact composite armor [J]. Defence Technology, 2020, 16(2):408-416.
[19] Li J, Zhang L, Huang F. Experiments and simulations of tungsten alloy rods penetrating into alumina ceramic/603 armor steel composite targets [J]. International journal of impact engineering, 2017, 101:1-8.
[20] J. Pawar M, Patnaik A, Biswas S K et al. Comparison of ballistic performances of Al2O3 and AlN ceramics [J]. International Journal of Impact Engineering, 2016, 98:42-51.
[21] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J].爆炸与冲击, 2018, 38(04):804-810.
GUO Z T, GAO B, GUO L, et al. Dynamic constitutive relation of Q235 steel based on J-C model [J]. Explosion and Shock Waves, 2018, 38(04):804-810.
[22] 郭子涛, 舒开鸥, 高斌,等. 基于J-C模型的Q235钢的失效准则 [J]. 爆炸与冲击, 2018, 38(06):1325-1332.
GUO Z T, SHU K O, GAO B, et al. Failure criterion of Q235 steel based on J-C model [J]. Explosion and Shock Waves, 2018, 38(06):1325-1332.

PDF(2566 KB)

Accesses

Citation

Detail

段落导航
相关文章

/