星型拉胀蜂窝材料在压剪复合加载下的力学特性研究

罗耿1,2,莫端钰1,刘浚哲1,柴成鹏1,陈轶嵩1

振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 183-192.

PDF(6057 KB)
PDF(6057 KB)
振动与冲击 ›› 2023, Vol. 42 ›› Issue (13) : 183-192.
论文

星型拉胀蜂窝材料在压剪复合加载下的力学特性研究

  • 罗耿1,2,莫端钰1,刘浚哲1,柴成鹏1,陈轶嵩1
作者信息 +

Mechanical properties of star-shaped auxetic honeycomb material under compression-shear composite loading

  • LUO Geng1,2, MO Duanyu1, LIU Junzhe1, CHAI Chengpeng1, CHEN Yisong1
Author information +
文章历史 +

摘要

拉胀蜂窝材料由于其良好的力学特性以及稳定的吸能特性,广泛地应用于各类防护结构。本文针对星型拉胀在压剪复合加载下的力学特性开展了研究工作。首先,基于有限元技术建立星型拉胀蜂窝材料的数值模型,并基于增材制造技术和万能试验机开展验证试验,并且开展了星型拉胀蜂窝材料在不同压剪复合加载角度和速度下的仿真研究,对星型拉胀蜂窝材料在各个加载工况下的力学特性与变形模式开展研究,结果表明星型拉胀蜂窝材料在准静态复合加载下依托胞元旋转发生整体变形,并产生倾斜变形带压溃,随着加载速度提升,由于惯性效应的增强,细观结构间的挤压变形更加充分,材料变形模式由整体变形向局部变形转变,形成冲击波。进而,基于椭圆方程对星型拉胀蜂窝材料初始屈服应力进行拟合,建立星型拉胀蜂窝材料的准静态/动态屈服面,随着速度的提高,屈服面呈现出明显强化;最后通过对星型拉胀蜂窝材料的吸能特性研究表明,随着加载角度的增大,材料法向和切向总吸能分别呈现出下降和提高的趋势,且切向吸能特性对角度的改变相对法向方向更加敏感。

Abstract

Auxetic honeycomb materials are widely used in various protective structures due to their good mechanical properties and stable energy absorption properties. In this paper, the finite element technology is used to establish the numerical model of the star auxetic honeycomb material, and the verification experiment is carried out based on the additive manufacturing technology and the universal testing machine. Furthermore, the simulation investigation of star-shaped auxetic honeycomb material under different compression-shear composite loading angles and speeds was carried out, and the yield surface of star-shaped auxetic honeycomb material was established. The results show that the star-shaped auxetic honeycomb material undergoes overall deformation under low-speed composite loading relying on the rotation of the cells, and produces oblique deformation belt crushing. More fully, the material deformation mode changes from overall deformation to local deformation, forming stress waves. The initial yield stress of the material was fitted by the ellipse equation, and the yield surface of the star-shaped auxetic honeycomb material was established. With the increase of the speed, the initial yield surface of the material showed obvious strengthening. The total energy absorption in the tangential and tangential directions showed a decreasing and increasing trend, respectively, and the tangential energy absorption characteristics were more sensitive to the change of the angle than the normal direction.

关键词

拉胀材料 / 星型蜂窝 / 复杂加载 / 屈服面 / 吸能特性

Key words

auxetic material / star honeycomb / complex loading / yield surface / energy absorption

引用本文

导出引用
罗耿1,2,莫端钰1,刘浚哲1,柴成鹏1,陈轶嵩1. 星型拉胀蜂窝材料在压剪复合加载下的力学特性研究[J]. 振动与冲击, 2023, 42(13): 183-192
LUO Geng1,2, MO Duanyu1, LIU Junzhe1, CHAI Chengpeng1, CHEN Yisong1. Mechanical properties of star-shaped auxetic honeycomb material under compression-shear composite loading[J]. Journal of Vibration and Shock, 2023, 42(13): 183-192

参考文献

[1] 任鑫, 张相玉, 谢亿民, “负泊松比材料和结构的研究进展,” 力学学报, vol. 51, no. 3, pp. 656-689, 2019.
Xin Ren, Xiangyu Zhang, Yimin Xie. RESEARCH PROGRESS IN AUXETIC MATERIALS AND STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-689. doi: 10.6052/0459-1879-18-381
[2] “The mechanics of three-dimensional cellular materials,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 382, no. 1782, pp. 43-59, 1997.
[3] L. J. Gibson, M. F. Ashby, G. Schajer et al., “The mechanics of two-dimensional cellular materials,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 382, no. 1782, pp. 25-42, 1982.
[4] A. Kolpakov, “Determination of the average characteristics of elastic frameworks,” Journal of Applied Mathematics and Mechanics, vol. 49, no. 6, pp. 739-745, 1985.
[5] R. Lakes, “Foam structures with a negative Poisson's ratio,” Science, vol. 235, no. 4792, pp. 1038-1040, 1987.
[6] Z. Dong, Y. Li, T. Zhao et al., “Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb,” Materials & Design, vol. 182, 2019.
[7] G. Feng, S. Li, L. Xiao et al., “Energy absorption performance of honeycombs with curved cell walls under quasi-static compression,” International Journal of Mechanical Sciences, vol. 210, 2021.
[8] N. Xu, H.-T. Liu, M.-R. An et al., “Novel 2D star-shaped honeycombs with enhanced effective Young’s modulus and negative Poisson’s ratio,” Extreme Mechanics Letters, vol. 43, 2021.
[9] 白临奇,史小全,刘宏瑞,孙雅洲. 冲击载荷下箭头型负泊松比蜂窝结构动态吸能性能研究[J]. 振动与冲击, 2021, 40(11): 70-77.
BAI Linqi, SHI Xiaoquan, LIU Hongrui, SUN Yazhou. Dynamic energy absorption performance of arrow type honeycomb structure with negative Poisson’s ratio under impact load. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(11): 70-77.
[10] H. Wang, Z. Lu, Z. Yang et al., “In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions,” International Journal of Mechanical Sciences, vol. 151, pp. 746-759, 2019.
[11] 邓小林,刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13): 103-109.
DENG Xiao-lin,LIU Wang-yu. In-plane impact dynamics analysis of sinusoidal honeycomb structure with negative poisson's ratio. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(13): 103-109.
[12] L. Wei, X. Zhao, Q. Yu et al., “A novel star auxetic honeycomb with enhanced in-plane crushing strength,” Thin-Walled Structures, vol. 149, 2020.
[13] L. Wei, X. Zhao, Q. Yu et al., “Quasi-static axial compressive properties and energy absorption of star-triangular auxetic honeycomb,” Composite Structures, 2021.
[14] 马芳武,梁鸿宇,赵颖,陈实现,蒲永锋. 倾斜荷载下内凹三角形负泊松比材料的面内冲击动力学性能[J]. 振动与冲击, 2020, 39(4): 81-87.
MA Fangwu,LIANG Hongyu,ZHAO Ying,CHEN Shixian,PU Yongfeng. In-plane dynamic crushing of concave triangles materials with negative poisson’s ratio under inclined load. JOURNAL OF VIBRATION AND SHOCK, 2020, 39(4): 81-87.
[15] A. S. M. Ashab, D. Ruan, G. Lu et al., “Quasi-static and dynamic experiments of aluminum honeycombs under combined compression-shear loading,” Materials & Design, vol. 97, pp. 183-194, 2016.
[16] B. Hou, A. Ono, S. Abdennadher et al., “Impact behavior of honeycombs under combined shear-compression. Part I: Experiments,” International Journal of Solids and Structures, vol. 48, no. 5, pp. 687-697, 2011.
[17] B. Hou, S. Pattofatto, Y. L. Li et al., “Impact behavior of honeycombs under combined shear-compression. Part II: Analysis,” International Journal of Solids and Structures, vol. 48, no. 5, pp. 698-705, 2011.
[18] A.-J. Wang, and D. McDowell, “In-plane stiffness and yield strength of periodic metal honeycombs,” J. Eng. Mater. Technol., vol. 126, no. 2, pp. 137-156, 2004.
[19] S. Hong, J. Pan, T. Tyan et al., “Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads,” International Journal of Plasticity, vol. 24, no. 1, pp. 89-117, 2008.
[20] R. Tounsi, B. Zouari, F. Chaari et al., “Reduced numerical model to investigate the dynamic behaviour of honeycombs under mixed shear–compression loading,” Thin-Walled Structures, vol. 73, pp. 290-301, 2013.
[21] R. Tounsi, E. Markiewicz, G. Haugou et al., “Dynamic behaviour of honeycombs under mixed shear-compression loading: Experiments and analysis of combined effects of loading angle and cells in-plane orientation,” International Journal of Solids and Structures, vol. 80, pp. 501-511, 2016.
[22] A. Ingrole, A. Hao, and R. Liang, “Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement,” Materials & Design, vol. 117, pp. 72-83, 2017.
[23] F. Xu, K. Yu, and L. Hua, “In-plane dynamic response and multi-objective optimization of negative Poisson's ratio (NPR) honeycomb structures with sinusoidal curve,” Composite Structures, vol. 269, 2021.
[24] C. Qi, F. Jiang, C. Yu et al., “In-plane crushing response of tetra-chiral honeycombs,” International Journal of Impact Engineering, vol. 130, pp. 247-265, 2019.
[25] J. Qiao, and C. Q. Chen, “Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs,” Journal of Applied Mechanics, vol. 82, no. 5, 2015.

PDF(6057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/